Agilent SICL
User’s Guide for Windows

RS Agilent Technologies

Manual Part Number: E2094-90038
Printed in U.S.A. E0701

Contents
Agilent SICL User’s Guide for Windows

Front Matter ... 1
NOLICE i 11
Warranty Informationccceeeeiieeiiii i 11
U.S. Government Restricted Rightsccooooiiiiiii s 11
Trademark Informationccccoiiiiiiiiiiii e 12
Printing HIStOryoeeeiie e 12
Copyright Informationccccooiiiiiiiii e 12

1. INtroduction ... —————— 13
What's in This GUIde?.........umieee e 15
SICL OVEIVIEW ..ttt e e e e e e e 16

Introducing VISA and SICLoociiiiiiiiiii e 16
SICL DeSCriPtioN ...ceeieieieeiiiieeie e 16
IfYOu Need Help ..o 18
2, Getting Started with SICLccccciiiiiii 19
Getting Started UsiNg C.......ooeviiiiiiiiii e 21
C Example Program Codeccccocuiiiiiiiiiiiiiiiiiieee e 21
C Example Code Descriptioncooooiiiiiiiiiiiiiiieee s 23
Compiling the C Example Programccccccviiiieeeniinnenn. 25
Running the C Example Programcccccoovviieeiiniinenennns 26
Where t0 GO NeXteeeiiiiiiiieieiee e 26
Getting Started Using Visual Basic..........ccccoccveeeiiiiiiiiciiiieeeee 27
Porting to Visual Basic 6.0ccocceviiiiiiiiiiiiiicc e 27
Visual Basic Program Example Codeccoccoeiiiiiniennnnnn 28
Visual Basic Example Code Descriptionccocoeiiiiieeeenn. 29
Building and Running the VB Example Program 31
Where t0 GO NeXtuueiiiiiiiieii e 32

3. Programming With SICL ... e 33

Building a SICL Applicationcccovviiiiiiie e, 35
Including the SICL Declaration Fileccccccoeeiiiiiiiiniinnne, 35
Libraries for C Applications and DLLSccccccvveeeeeeiiiinnnnns 35
Compiling and Linking C Applicationscccccccveeeeiiiinnnns 36
Loading and Running Visual Basic Applications 37
Thread Support for 32-bit Windows Applications 38

Opening a Communications Session..........ccccceeeeeeeeeieeiiciiiiieeee, 39
Steps to Open a Communications Sessionc....ccoeuues 39
DEVICE SESSIONS ..oooiiiiiiiieiiiiiiie ettt 40
Interface SeSSIONSccoiiiiiiiii i 41

Contents 3

Commander SESSIONSuuuuiiiieiiiieee e 42

Sending /0 CommaNdSccceeiiiiiiiiiiiiiee e 43
Formatted 1/0 in C Applicationsccccovieviiiieeeeeiiicciinns 43
Formatted 1/O in Visual Basic Applicationsccccuvveee. 52
Non-Formatted /Occoviiiiiiii e 59

Handling Asynchronous Events............cccooovviiiiiiiiiicce e, 62
SRQ HaNAIENS ... 62
Interrupt Handlers ... 63
Temporarily Disabling/Enabling Asynchronous Events 63

Handling Errors. 65
Logging SICL Error MeSSagescccovvveveeeiiiiieeeiiiiiieee s 65
Using Error Handlers in Ccooiiiiiiiiiiiieeee e 66
Using Error Handlers in Visual BasiCcccccccceeiiiiiiineecns 69

USING LOCKS ...t 71
What are LOCKS? ... 71
LOCK ACHIONS ... 72
Locking in a Multi-User Environmentcccocceiiiieeeennns 72

Additional Example Programscccoviiieiiiiieiee e 76
Example: Oscillosope Program (C)cccceeviiiiieiniiieneenne 76
Example: Oscillosope Program (Visual Basic) 83

4. Using SICL with GPIB ..o 87

Introduction to GPIB Interfacesccccoovieiiiiiiiiiicec e, 89
GPIB Interfaces OVErvIEWccccocveiiiiiiiiiiie e 89
Selecting a GPIB Communications Sessionccc.cccueee 91
SICL GPIB FUNCHONSooiiiiiiiiiiieiiieiiee e 91

Using GPIB Device SESSIONScccciiiiiiiiiiiiiiiee et 92
SICL Functions for GPIB Device Sessionsccccocuveeenn. 92
Addressing GPIB DeViCESceeveiiiiiiiiiiiiiiieeeiiee e 92
GPIB Device Session Examplescccooiiiiiiiiiniiiiiiees 94

Using GPIB Interface SesSionseoeviiiiiiiiiiiiiieeeiee e 98
SICL Functions for GPIB Interface Sessionscccccceee.. 98
Addressing GPIB Interfacescccoooiviiiiniiiiiiee e, 99
GPIB Interface Session Examplescccoooiiieeieenninie, 100

Using GPIB Commander SESSIONScccccvveeeiiiiieeeiiiiee e 103
SICL Functions for GPIB Commander Sessions 103
Addressing GPIB Commandersccccoevviieeeeiiiiiieeen e, 103

Writing GPIB Interrupt Handlers ..., 105
Multiple I INTR GPIB TLAC Interruptscccceeens 105
Handling SRQs from Multiple GPIB Instruments 105

Contents 4

5. Using SICL with GPIO ... 109

Introduction to GPIO Interfacesccccoovvieiiiiiiiie e 111
GPIO Interface OVErvIEWcccceeviiiiiieiiiiiiee e 111
Selecting a GPIO Communications Sessioncc......... 113
SICL GPIO FUNCLONSoviiiiieiiiiieeecee e 113

Using GPIO Interface SeSSIiONSccovveeeeiiiiiiiiiiiiieeeieee e 115
Addressing GPIO Interfacesccocvvvveeeeeeeeciecccciieee 115
SICL Functions for GPIO Interface Sessions 115
Example GPIO Interface Programscccccccveeveeiiinicnnnns 117

6. Using SICL With VXI ... e s ssee e ssnee e 123

Introduction to VXI Interfacescccccceoiiiiiiiiiiieee e 125
VXI Interfaces OVErviewoooocciiiiiieie e 125
VXI Communications Sessionsccccveeeeeeeeeeniiiiiiiieee 129
VXI DEVICE TYPES ..uieieieeiiiieiiee et 129
SICL Functions for VXI Interfacesccccoooioiiiinennnnnn. 130

Programming VXI Message-Based Devices.........cccccccceeeiiinnnne 131
VXI Message-Based Device Functionsccccoceeeennns 131
Addressing VXI Message-Based Devicesccccceeeeennne 132

Programming VXI Register-Based DeviCes...........ccccceeviieeeenns 135
Addressing VXI Register-Based Devicesccccooeeeeee.n. 136
Programming Using the I-SCPI Interfacecccccooieeen. 137
Programming Directly to Registersccccccviiiiiiiiinnnn, 141

Programming VXI Interface Sessions..........cccccvviiveeiiiiiinecnns 145
VXI Interface Sessions Functionsccccccceiiiiiiiiiiinne. 145
Addressing VXI Interface Sessionsccccocveeveiiiiiieeeennns 145

Miscellaneous VXI Interface Programming..........ccccceviiiieeeinnns 148
Communicating with VME DeVicesccccccoveiiiiiineiinnnn. 148
VXI Backplane Memory I/O Performancecc.ccccceee 152
Using VXI-Specific Interrupts ... 156

7. Using SICL with RS-232 ... 159

Introduction to RS-232 Interfacescooooeeiiiiiiii i 161
ASRL (RS-232) Interface OVerviewccccceeeeeeeieicennnnneee. 161
RS-232 Communications SesSioNnsccccceevvivveeeviinennn. 163
RS-232 SICL FUNCLONS ...ccciiiiiiiieiiiiiee e 164

Using RS-232 DeViCe SESSIONS......cviviiieeeeieiiiiiiiiiiieeeeeeeee e 167
Addressing RS-232 DeVicescccccvveeeiieeeeeeeieiccciiiieee 167
SICL Functions for RS-232 Device Sessions 168
Example Device Session Programsccccccceeeeeeeeiiiennns 169

Using RS-232 Interface SeSSIONS.......cccceeevviiieiiiiiiiiiieiee e 172
Addressing RS-232 Interfacescccccceveeeeeeiiiiiiccciiiieee. 172
SICL Functions for RS-232 Interface Sessions 173
Example Interface Sessions Programsccccccceeieinnns 175

Contents 5

8. Using SICL with LANccomiiiirninennisne s 179

Introduction to LAN Interfaces.........ccccooviieieiiiiee e 181
LAN Interfaces OVErvIEWccccceeiiiiiiiiieiiiiiiee e 181
Configuring LAN Client Interfacesccccoovvvvveeeieeeeeenienns 186
Configuring LAN Server Interfacescccccevvvveeeeeeeeeeiieinn, 189

Using LAN-gatewayed SeSSIONSccceeeeeiiiiiiiiiiiiiiiieeeee e 190
Addressing GUIdElNESccevveeeiiiiiiiiiieeeee e, 190
SICL Function Supportcceeeiiiiiiieee e 192
Example Programs ... 193

Using LAN Interface SesSioNS.........ccvvveiiiiiiieiiiiiiieeeeieee e 197

Using Locks, Threads, and Timeoutsoccoiciiiiieieeieennennes 198
Using Locks and Threads Over LANccccooiiiiiiiiiiinens 198
Using Timeouts with LAN ... 199

9. SICL Language Referenceccccoviimmmrninnsnnssssss e 205

INtrOAUCTION ... 207
Function Specifics ... 207

IBLOCKCOPY ...ttt 209

IBLOCKMOVEX ...ooiieiiiiiiite ettt 211

ICAUSEERR...... .ttt 213

ICLEAR. ... e 214

ICLOSE ... 215

IDEREFPTR ..ot 216

IFLUSH et 217

IFREAD ...ttt ee e e 219

IFWRITE ...ttt e 221

IGETADDR ...ttt 223

IGETDATA . oottt e e e e e e e 224

IGETDEVADDR......oiiiiiiiit ettt 225

IGETERRNO ...ttt 226

IGETERRSTR ..ottt 227

IGETGATEWAYTYPEooi it 228

IGETINTESESS.....cc oo 229

IGETINTETYPE.ottt 230

IGETLOCKWAIT .ottt 231

IGETLU. ...t 232

IGETLUINFO ...ttt 233

IGETLULIST .ot 235

IGETONERROR......ciiiiiiie ettt 236

IGETONINTR ..ot 237

IGETONSRQottt 238

IGETSESSTYPE ... 239

IGETTERMOCHRooiiiiii et 240

Contents 6

IGETTIMEOUT ... 241

IGPIBATNCTL ... 242
IGPIBBUSADDR ...ttt 243
IGPIBBUSSTATUSo 244
IGPIBGETTIDELAY ... 246
IGPIBLLO ... 247
IGPIBPASSCTL ... 248
IGPIBPPOLL ... 249
IGPIBPPOLLCONFIG.... ..ot 250
IGPIBPPOLLRESP ... 251
IGPIBRENCTL ... 252
IGPIBSENDCMD ... 253
IGPIBSETTIDELAY ..o 254
IGPIOCTRL ... 255
IGPIOGETWIDTH ... 259
IGPIOSETWIDTH ... 260
IGPIOST AT .. 262
THINT e 265
IINTROFF .. 267
IINTRON L 268
ILANGETTIMEOUT ... 269
ILANTIMEOUT ... 270
ILOCAL ..o 273
ILOCK ..o 274
IMAP L e 277
IMAPX e 280
IMAPINFO ... 283
IONERROR ... 285
IONINTR ..o 288
IONSRAQL.....cc e 290
IOPEN .. e 291
IPEEK . e 293
IPEEKXS8, IPEEKX16, IPEEKX32 ... 294
IPOKE ... 295
IPOKEXS8, IPOKEX16, IPOKEX32.......cooiiiiieiie e 296
IPOPFIFO ... 297
IPRINTE e 299
IPROMPTE e 309
IPUSHFIFO ... e 310
IREAD ... 312
IREADSTB ... 314
IREMOTE ... 315
ISCANF .. e 316
ISERIALBREAK ... 326

Contents 7

ISERIALCTRL ...t 327

ISERIALMCLCTRL ...ttt 330
ISERIALMOCLSTAT ettt 331
ISERIALSTAT .ttt 332
ISETBUF ..o e 336
ISETDATA et s e e 338
ISETINTR Lot 339
ISETLOCKWAIT ...ttt 346
ST = IS 1= RSSO 347
ISETUBUF ..ottt 348
ISWAP ..t 350
ITERMOCHR ...ttt 352
ITIMEOUT oottt e e e 353
ITRIGGERcoiiiiiiiiee ettt 354
IUNLOGCK ...ttt e e e e 356
IUNMARP ..ot e e e 357
TUNMAPX ..ottt ee e e aee e e e 359
IVERSION ..ottt a e e 361
IVXIBUSSTATUS ..ottt 362
IVXIGETTRIGROUTEoooiiiiiiiee et 365
IVXIRMINFO. ...ttt 366
IVXISERVANTS ..ottt 369
IVXITRIGOFF ... 370
IVXITRIGON ...t 372
IVXITRIGROUTE ...ttt 374
IVXIWAITNORMOP........ooiiiiiiiiiee et 376
IVXIWS ..ttt a e e e 377
IWAITHDLR ...ttt e 379
IWRITE ...t a e e 381
IXTRIG. ...t tee e et bee e e s 383
_SICLCLEANUP ..ottt 386
A. SICL Library Informationcccccecmmiiininmminnnirsne e 387
File System Information...........cccccviiiiiiiiii e, 389
Windows 95/Windows 98/Windows Meccccoecvveeeennnne. 389
Windows NT/Windows 2000ccccccuveeeriiiieeeeeiiieeee e 390
SICL Function SUMMAIYccooviiiiiiiiiiieee e 392
Porting to Visual BasSiC..........cccoeeviiiiiiiiieeeeeeeeee e 397
RS-232 Cabling Informationcceeviieiiiiiiiiieee e 398
Cable/Adapter Part Numberscccccccooveiiiiiiiiiiiiieeeeeee, 398
Cable/Adapter PinOULSccccvvviiiiiieeie e 399

Contents 8

B. Troubleshooting SICL Programsccccccceereiiisisscsssssssesseesessesennns 407

SICLEMOr COUES ..o 409
Common Windows Problems..............ueuevviviiiiiiiiiiiieieeeeeeeee e, 412
Common RS-232 Problems...........ooevvveeiiiiiiiiiiiieeeeeeeeeeee e 413
Common GPIO Problemscovvveviiiiiiiieceeeeeee e 414

Bad Address (for 10pen) ..eieeeeie i 414

Operation Not Supportedcccccvveviiieeeeiieicceee e 415

NO DEVICE ..ot 415

Bad Parameterccoooiiiiiiiiiie e, 415

Common LAN Problemseuoiiiiiiiee e, 416
General Troubleshooting Techniquesccccocceeerinneen. 416

LAN Client Problemscooeiieiiieieeeeeee e, 418

LAN Server Problemscooeiiiiiiiiiieeeeeee e, 419

GlOSSANY ..cceeeeiiirnnrr i 421
Lo = G PPN 425

Contents 9

Contents 10

Notice

The information contained in this document is subject to change without
notice.

Agilent Technologies shall not be liable for any errors contained in this
document. Agilent Technologies makes no warranties of any kind with
regard to this document, whether express or implied. Agilent Technologies
specifically disclaims the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for any
direct, indirect, special, incidental, or consequential damages, whether
based on contract, tort, or any other legal theory, in connection with the
furnishing of this document or the use of the information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Agilent Technologies
product and replacement parts can be obtained from Agilent Technologies,
Inc.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as "commercial computer
software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-
7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial
item" as defined in FAR 2.101(a), or as "Restricted computer software" as
defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or
contract clause), whichever is applicable. You have only those rights
provided for such Software and Documentation by the applicable FAR or
DFARS clause or the Agilent standard software agreement for the product
involved.

1"

Trademark Information

Microsoft®, Windows ® 95, Windows ® 98, Windows ® Me,

Windows ® 2000, and Windows NT® are U.S. registered trademarks of
Microsoft Corporation. All other brand and product names are trademarks
or registered trademarks of their respective companies.

Printing History

Edition 1 - April 1994
Edition 2 - September 1995
Edition 3 - May 1996
Edition 4 - October 1996
Edition 5 - July 2000
Edition 6 - July 2001

Copyright Information

Agilent Technologies Standard Instrument Control Library (SICL)
User’s Guide for Windows

Edition 6

Copyright © 1984 -1988 Sun Microsystems, Inc.

Copyright © 1994-1996, 2000, 2001Agilent Technologies, Inc.
All rights reserved.

12

Introduction

13

Introduction

This Agilent Standard Instrument Control Libraries (SICL) User’s Guide

for Windows describes Agilent SICL and how to use it to develop I/0O
applications on Microsoft Windows 95, Windows 98, Windows Me, Windows
NT 4.0, and Windows 2000. A getting started chapter is provided to help you
write and run your first SICL program. Then, this guide explains how to build
and program SICL applications. Later chapters are interface-specific,
describing how to use SICL with GPIB, GPIO, VXI, RS-232, and LAN
interfaces.

NOTE

Before you can use SICL, you must install and configure SICL on your
computer. See the Agilent IO Libraries Installation and Configuration
Guide for Windows for installation on Windows systems. Unless
otherwise indicated, Windows NT refers to Windows NT 4.0.

This chapter includes:

B What’s in This Guide?
B SICL Overview
B If You Need Help

14 Chapter 1

Introduction
What’s in This Guide?

What’s in This Guide?

This chapter provides an overview of SICL. In addition, this guide contains
the following chapters:

Chapter 2 - Getting Started with SICL shows how to build and run
an example program in C/C++ and in Visual Basic.

Chapter 3 - Programming with SICL shows how to build a SICL
application in a Windows environment and provides information on
communications sessions, addressing, error handling, locking, etc..

Chapter 4 - Using SICL with GPIB shows how to communicate over
the GPIB interface.

Chapter 5 - Using SICL with GPIO shows how to communicate over
the GPIO interface.

Chapter 6 - Using SICL with VXI shows how to communicate over
the VXlbus interface.

Chapter 7 - Using SICL with RS-232 shows how to communicate
over the RS-232 interface.

Chapter 8 - Using SICL with LAN shows how to communicate over
a Local Area Network (LAN).

Chapter 9 - SICL Language Reference provides function syntax and
description for each SICL function.

Appendix A - SICL Library Information provides information on SICL
files, provides a SICL function summary and SICL error codes, and
provides information on porting to Visual Basic and on RS-232
cables.

Appendix B - Troubleshooting SICL Programs gives general
troubleshooting techniques and shows common Windows,
RS-232, GPIO, and LAN problems.

Glossary includes major terms and definitions used in this guide.

Chapter 1 15

Introduction
SICL Overview

SICL Overview

SICL is part of the Agilent IO Libraries. The Agilent 10 Libraries consists of
two libraries: Agilent Virtual Instrument Software Architecture (VISA) and
Agilent Standard Instrument Control Library (SICL).

Introducing VISA and SICL

B Agilent Virtual Instrument Software Architecture (VISA) is an 1/0O
library designed according to the VXlplugé&play System Alliance that
allows software developed from different vendors to run on the same
system.

B Use VISA if you want to use VXlplugé&play instrument drivers in your
applications, or if you want the 1/O applications or instrument drivers
that you develop to be compliant with VXIplug&play standards. If you
are using new instruments or are developing new I/O applications or
instrument drivers, we recommend you use Agilent VISA.

B Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Agilent that is portable across many I/O interfaces and
systems.

B You can use Agilent SICL if you have been using SICL and want to
remain compatible with software currently implemented in SICL.

NOTE

Since VISA and SICL are different libraries, using VISA functions and
SICL functions in the same 1/O application is not supported.

SICL Description

Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Agilent that is portable across many I/O interfaces and
systems. SICL is a modular instrument communications library that works
with a variety of computer architectures, I/O interfaces, and operating
systems. Applications written in C/C++ or Visual Basic using this library
can be ported at the source code level from one system to another with no
(or very few) changes.

16 Chapter 1

SICL Support

SICL Users

SICL
Documentation

Introduction
SICL Overview

SICL uses standard, commonly used functions to communicate over a wide
variety of interfaces. For example, a program written to communicate with a
particular instrument on a given interface can also communicate with an
equivalent instrument on a different type of interface.

The 32-bit version of SICL is supported on this version of the Agilent IO
Libraries for Windows 95, Windows 98, Windows Me, Windows NT, and
Windows 2000. Support for the 16-bit version of SICL was removed in
version H.01.00. However, versions through G.02.02 support 16-bit SICL.
C, C++, and Visual Basic are supported on all these Windows versions.
SICL is supported on the GPIB, GPIO, VXI, RS-232, and LAN interfaces.

SICL is intended for instrument I/O and C/C++ or Visual Basic programmers
who are familiar with Windows 95, Windows 98, Windows Me, Windows
2000, or Windows NT. To perform SICL installation and configuration on
Windows 2000 or Windows NT, you must have system administrator
privileges on the applicable system.

This table shows associated documentation you can use when programming
with Agilent SICL.

Agilent SICL Documentation

Document Description

Agilent SICL User’s Guide for Shows how to use Agilent SICL and provides the SICL

Windows

language reference.

SICL Online Help

Information is provided in the form of Windows Help.

SICL Example Programs Example programs are provided online to help you develop

SICL applications. SICL example programs are provided in the
C\SAMPLES (for C/C++) subdirectory and in the VB\SAMPLES
subdirectory (for Visual Basic) under the base directory where
SICL is installed. For example, under the C:\SICL95 or C:\SICLNT
base directory if the default installation directory was used.

VXIbus Consortium specifications TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
(when using VISA over LAN) TCP/IP-VXIbus Interface Specification - VXI-11.1, Rev. 1.0

TCP/IP-IEEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface Specification - VXI-11.3,
Rev. 1.0

Chapter 1 17

Introduction
If You Need Help

If You Need Help

In the USA and Canada, you can reach Agilent Technologies at
these telephone numbers:

USA: 1-800-452-4844
Canada: 1-877-894-4414

Outside the USA and Canada, contact your country’s Agilent support
organization. A list of contact information for other countries is
available on the Agilent web site:

http://www.agilent.com/find/assist

18

Chapter 1

Getting Started with SICL

19

Getting Started with SICL

This chapter gives guidelines to help you to get started programming with
SICL using the C/C++ and Visual Basic languages. This chapter provides
example programs in C/C++ and in Visual Basic to help you verify your
configuration and introduce you to some of SICL’s basic features. The
chapter contents are:

B Getting Started Using C
B Getting Started Using Visual Basic

NOTE

This chapter is divided into two sections: the first section is for C
programmers and the second section is for Visual Basic programmers.
See “Getting Started Using C” if you want to use SICL with the

C/C++ programming language. See “Getting Started Using Visual Basic”
if you want to use SICL with the Visual Basic programming language.

You may want to see Chapter 9 - SICL Language Reference to
familiarize yourself with SICL functions. This reference information is also
available as online help. To see the reference information online, double-
click the Help icon in the Agilent IO Libraries program group.

20 Chapter 2

Getting Started with SICL
Getting Started Using C

Getting Started Using C

This section describes an example program called idn that queries a
GPIB instrument for its identification string. This example builds a console
application for WIN32 programs (32-bit SICL programs on Windows 95,
Windows 98, Windows Me, Windows 2000, or Windows NT) using the

C programming language.

C Example Program Code

All files used to develop SICL applications in C or C++ are located in the
C subdirectory of the base IO Libraries directory. Sample C/C++ programs
are located in the C\SAMPLES subdirectory of the base IO Libraries directory.

Each sample program subdirectory contains makefiles or project files that
you can use to build each sample C program. You must first compile the
sample C/C++ programs before you can execute them.

The idn example files are located in the C\SAMPLES\IDN subdirectory
under the base IO Libraries directory. This subdirectory contains the source
program, IDN.C. The source file IDN.C is listed on the following pages. An
explanation of the function calls in the example follows the program listing.

/* This program uses the Standard Instrument Control
Library to query a GPIB instrument for an identification
string and then prints the result. This program is to be
built as a WIN32 console application on Windows 95,
Windows 98, Windows 2000, Windows Me, or Windows NT. Edit
the DEVICE ADDRESS line to specify the address of the
applicable device. For example:

hpib7,0: refers to a GPIB device at bus address 0
connected to an interface named “hpib7” by the I0 Config
utility.

hpib7,9,0: refers to a GPIB device at bus address 9,
secondary address 0, connected to an interface named
“hpib7” by the IO Config utility. */

Chapter 2 21

Getting Started with SICL
Getting Started Using C

#include <stdio.h> /* for printf () */

#include “sicl.h” /* SICL routines */

#define DEVICE ADDRESS “hpib7,0” /* Modify for setup */
void main (void)

{

INST id; /* device session id */
char buf[256] = { 0 }; /* read buffer for idn string */
#if defined(BORLANDC) && !defined(WIN32)

_InitEasyWin();/ / required for Borland EasyWin
programs.*/
#endif

/* Install a default SICL error handler that logs an

error message and exits. On Windows 95, Windows 98, or
Windows Me, view messages with the SICL Message Viewer.
For Windows 2000 or Windows NT use the Event Viewer. */

ionerror (I _ERROR EXIT);

/* Open a device session using the DEVICE ADDRESS */
id = iopen (DEVICE ADDRESS) ;

/* Set the I/O timeout value for this session to 1
second */
itimeout (id, 1000);

/* Write the *RST string (and send an EOI indicator)
to put the instrument into a known state. */
iprintf (id, “*RST\n”);

/* Write the *IDN? string and send an EOI indicator,
then read the response into buf.

ipromptf (id, “*IDN?\n”, “%t”, buf);

printf (“%$s\n”, buf);

iclose (id);

/* This call is a no-op for WIN32 programs.*/
_siclcleanup();

22 Chapter 2

Getting Started with SICL
Getting Started Using C

C Example Code Description
sicl.h

The sicl.h file is included at the beginning of the file to provide the function
prototypes and constants defined by SICL.

INST

Notice the declaration of INST id at the beginning of main. The type INST is
defined by SICL and is used to represent a unique identifier that will describe
the specific device or interface that you are communicating with. The id is
set by the return value of the SICL iopen call and will be set to 0 if iopen
fails for any reason.

ionerror

The first SICL call, ionerror, installs a default error handling routine that is
automatically called if any of the subsequent SICL calls result in an error.
I_ERROR_EXIT specifies a built-in error handler that will print out a
message about the error and then exit the program. If desired, a custom
error handling routine could be specified instead.

NOTE

On Windows 95, Windows 98, and Windows Me, error messages may be
viewed by executing the Message Viewer utility in the Agilent IO
Libraries program group. On Windows 2000 and Windows NT, these
messages may be viewed with the Event Viewer utility in the Agilent
IO Libraries Control on the Windows taskbar.

iopen

When an iopen call is made, the parameter string "hpib7,0” passed to
iopen specifies the GPIB interface followed by the bus address of the
instrument. The interface name, "hpib7”, is the name given to the interface
during execution of the 10 Config utility. The bus (primary) address of the
instrument follows (7 0” in this case) and is typically set with switches on the
instrument or from the front panel of the instrument.

NOTE

To modify the program to set the interface name and instrument address
to those applicable for your setup, see Chapter 3 - Programming with
SICL for information on using SICL’s addressing capabilities.

Chapter 2 23

Getting Started with SICL
Getting Started Using C

itimeout

itimeout is called to set the length of time (in milliseconds) that SICL will
wait for an instrument to respond. The specified value will depend on the
needs of your configuration. Different timeout values can be set for different
sessions as needed.

iprintf and ipromptf

SICL provides formatted I/O functions that are patterned after those used in
the C programming language. These SICL functions support the standard
ANSI C format strings, plus additional formats defined specifically for
instrument I/O.

The SICL iprintf£ call sends the Standard Commands for Programmable
Instruments (SCPI) command *RST to the instrument that puts it in a known
state. Then, iprompt£ queries the instrument for its identification string.
The string is read back into buf and then printed to the screen. (Separate
iprintf and iscanf calls could have been used to perform this
operation.)

The %t read format string specifies that an ASCII string is to be read back,
with end indicator termination. SICL automatically handles all addressing
and GPIB bus management necessary to perform these reads and writes to
instrument.

iclose and _siclcleanup

The iclose function closes the device session to this instrument (id is no
longer valid after this point). WIN32 programs on Windows 95, Windows 98,
Windows 2000, Windows Me, or Windows NT do not require the
_siclcleanup call.

NOTE

See Chapter 9 - SICL Language Reference or the SICL online Help for
more information on these SICL function calls.

24 Chapter 2

Getting Started with SICL
Getting Started Using C

Compiling the C Example Program

The C\SAMPLES\IDN subdirectory contains a number of files you can use to
build the example with specific compilers. You will have a subset of the
following files, depending on the Windows environment you are using.

idn.c Example program source file.

idn.def Module definition file for IDN example program.

MSCIDN.MAK Windows 3.1 makefile for Microsoft C and
Microsoft SDK compilers.

VCIDN.MAK Windows 3.1 project file for Microsoft Visual C++.

VCIDN32.MAK Windows 95 or Windows NT (32-bit) project file for
Microsoft Visual C++.

VCIDN16.MAK Windows 95 (16-bit) project file for Microsoft
Visual C++.

QCIDN.MAK Windows 3.1 project file for Microsoft QuickC for
Windows.

BCIDN.IDE Windows 3.1 project file for Borland C Integrated
Development Environment.

BCIDN32.IDE Windows 95 or Windows NT (32-bit) project file for
Borland C Integrated Development Environment.

BCIDN16.IDE Windows 95 (16-bit) project file for Borland C
Integrated Development Environment.

Steps to compile the idn example program follow.

1 Connect an instrument to a GPIB interface that is compatible with

IEEE 488.2.

2 Change directories to the location of the example.

3 The program assumes the GPIB interface name is hpib7 (set
using IO Config) and the instrument is at bus address 0. If
necessary, modify the interface name and instrument address on
the DEVICE_ADDRESS definition line in the IDN.C source file.

Chapter 2

25

Getting Started with SICL
Getting Started Using C

4 Select and load the appropriate project or make file. Then, compile
the program as follows:

B For Borland compilers, use Project | Open Project.
Then, select Project | Build All.

B For Microsoft compilers, use Project | Open. Next, set
the include file path by selecting Options | Directories.
Then, in the Include File Path box, enter the full path to the
C subdirectory. Finally, select Project | Re-build All.

Running the C Example Program

To run the idn example program, execute the program from a console
command prompt.

B For Borland, select Run | Run
B For Microsoft, select Project | Execute or Run | Go

If the program runs correctly, an example of the output if connected to a
54601A oscilloscope is

HEWLETT-PACKARD, 54601A,0,1.7

If the program does not run, see the message logger for a list of run-time
errors, and see Chapter 9 - Troubleshooting SICL Programs for guidelines
to correct the problem.

Where to Go Next

Go to Chapter 3 - Programming with SICL. In addition, you should see the
chapter(s) that describe how to use SICL with your specific interface(s):

Chapter 4 - Using SICL with GPIB
Chapter 5 - Using SICL with GPIO
Chapter 6 - Using SICL with VXI
Chapter 7 - Using SICL with RS-232
Chapter 8 - Using SICL with LAN

You may also want to familiarize yourself with SICL functions, defined in
Chapter 9 - SICL Language Reference and in the reference information
provided in SICL online Help. If you have any problems, see Appendix B -
Troubleshooting SICL Programs.

26 Chapter 2

Getting Started with SICL
Getting Started Using Visual Basic

Getting Started Using Visual Basic

This section gives guidelines to get started programming applications in
Visual Basic 6.0 (VB 6.0).

Porting to Visual Basic 6.0

This edition of this manual shows how to program SICL applications in
Visual Basic version 6.0. For SICL applications written in an earlier Visual
Basic version than version 6.0 (for example, version 3.0), you can port your
SICL applications to Visual Basic version 6.0. Once you have made the
changes shown, your SICL applications should run correctly with Visual
Basic 6.0.

To port SICL applications to Visual Basic 6.0, you will need to add the
SICL4.BAS declaration file (rather than the SICL.BAS file) as a module to
each project that calls SICL for Visual Basic 6.0.

There may also be changes in functions when passing null pointers for
strings to SICL functions. For example, in Visual Basic version 3.0, the
preceding ByVal keyword was used as ivprint£(id, mystring, ByVal 0&).
However, in Visual Basic version 4.0 or later, you only need to pass the 0&
null pointer because version 4.0 or later knows this is by reference
(ivprint£(id, mystring, 0&)).

In Visual Basic 6.0, project files have a .vbp suffix, not a .mak suffix.
Earlier versions that used a .mak project suffix may be imported into VB 6.0
by selecting Open Project... and choosing a project with a .mak suffix
from an earlier version of Visual Basic. When you save the project, VB 6.0
will append a . vbp to the project file.

Constants in Visual Basic 3.0 and 4.0, such as MB_ICON_EXCLAMATION
and MB_OK are not defined in Visual Basic 6.0. Instead, use constants such
as vbExclamation and vbOK.

Print statements should be changed to Debug.Print or Forml.Print.
Output would then be directed to print to the Immediate window or to a Form
named Forml, respectively. Otherwise, you will get error:

Chapter 2 27

Getting Started with SICL
Getting Started Using Visual Basic

Visual Basic Program Example Code

This section describes an example program called idn that queries a
GPIB instrument for its identification string. This example builds a console
application for WIN32 programs (32-bit SICL programs on Windows 95,
Windows 98, Windows Me, Windows 2000, or Windows NT) using the
Microsoft Visual Basic 6.0 Programming language.

NOTE

Be sure to include the SICL4.BAS file (in the VB directory) in your Visual
Basic project. This file contains the necessary SICL definitions, function
prototypes, and support procedures to allow you to call SICL functions
from Visual Basic.

All files used to develop SICL applications in Visual Basic 6.0 are located in
the vb subdirectory of the base IO Libraries directory. The default install
location of the 10 Libraries directory is C:\Program Files\Agilent.

Sample Visual Basic programs are located in the vb\samples subdirectory of
the base 10 Libraries directory. Each sample program subdirectory contains
a (.vbp) project file that you can open from Visual Basic 6.0.

The idn example files are located in the vb\samples\idn subdirectory under
the base 10 Libraries directory. This subdirectory contains the Visual Basic
module, idn.bas. This module is listed on the following pages (some
comments are not listed). An explanation of the function calls in the example
follows the program listing.

Option Explicit
rYryyyyryryryryryvyyyyrryryryryryrvryrrrrrrrrvrrrrrrrrrrrrrrrrrvrvrvrvrony
' ddn.bas

The following subroutine queries *IDN? on a GPIB
instrument and prints out the result. No SICL error
handling is set up in this example, but should be

|l
|l
|l
' as good programming practice
rvTYyyyyyyryyyyvyryyryryryrrrryrvrrrrrrrrrrrrrrrrrrrrrrrrvrvrvrurony
Sub Main ()

Dim id As Integer

Dim strres As String * 80 'Fixed-length String

Dim actual As Long

28 Chapter 2

Getting Started with SICL
Getting Started Using Visual Basic

' Open the instrument session

' "hpib7" is the SICL Interface name as defined in:
' Start|Programs|Agilent IO Libraries|IO Config

' "22" is the instrument gpib address on the bus

' Change these to the SICL Name and gpib address

' for your instrument

id = iopen ("hpib7,22")

Call itimeout (id, 5000)

' Query device's *IDN? string
Call iwrite(id, "*IDN?" + Chr$(10), 6, 1, 0&)

' Read result
Call iread(id, strres, 80, 0&, actual)

' Display the results
MsgBox "Result is: " + strres, vbOKOnly, "*IDN? Result"

' Close the instrument session
Call iclose (id)

' Tell SICL to cleanup for this task
Call siclcleanup
End Sub

Visual Basic Example Code Description

id

Notice the declaration of id at the beginning of Sub Main(). The integer id is
used to represent a unique identifier that will describe the specific device or

interface that you are communicating with. The id is set by the return value
of the SICL iopen call and will be set to 0 if iopen fails for any reason.

iopen

When an iopen call is made, the parameter string "hpib7,23" passed to
iopen specifies the GPIB interface followed by the bus address of the
instrument. The interface name, "hpib7", is the name given to the interface
during execution of the 10 Config utility. The bus (primary) address of the
instrument follows ("23" in this case) and is typically set with switches on
the instrument or from the front panel of the instrument.

Chapter 2 29

Getting Started with SICL
Getting Started Using Visual Basic

NOTE

To modify the program to set the interface name and instrument address
to those applicable for your setup, see Chapter 3 - Programming with
SICL for information on using SICL's addressing capabilities.

NOTE

On Windows 95, Windows 98, and Windows 2000, error messages may
be viewed by executing the Message Viewer utility in the Agilent 10
Libraries program group. On Windows NT, these messages may be
viewed with the Event Viewer utility in the Agilent 10 Libraries Control on
the taskbar.

itimeout

itimeout is called to set the length of time (in milliseconds) that SICL will
wait for an instrument to respond. The specified value will depend on the
needs of your configuration. Different timeout values can be set for different
sessions as needed.

iwrite and iread

The SICL I/0O iwrite function sends a block of data to an interface or
device and iread reads raw data from the device or interface. The iwrite
call sends the Standard Commands for Programmable Instruments (SCPI)
command *IDN? to the instrument that asks for its identification string.

The fixed-length string strres is read back into buf with iread and this is
then displayed in a Message Box. SICL automatically handles all addressing
and GPIB bus management necessary to perform these reads and writes to
the instrument.

iclose and _siclcleanup

The iclose function closes the device session to this instrument (id is no
longer valid after this point). WIN32 programs on Windows 95, Windows 98,
Windows Me, Windows 2000, or Windows NT do not require the
_siclcleanup call.

30 Chapter 2

Getting Started with SICL
Getting Started Using Visual Basic

Building and Running the VB Example Program

The vb\samples\idn subdirectory contains the files you can use to build and
run the example. You will have a subset of the following files, depending on
the Windows environment you are using.

idn.bas Microsoft Visual Basic 6.0 Module file
idn.vbp Microsoft Visual Basic 6.0 Project file
idn.vbw Microsoft Visual Basic 6.0 Workspace file

The steps to build and run the idn example program follow.

1 Connect an instrument to a GPIB interface that is compatible with
IEEE 488.2.

2 Start the Visual Basic 6.0 application.

NOTE

This example assumes you are building a new project (no .vbp file exists
for project). If you do not want to build the project from scratch, from the
menu select File | Open Project.. ., select and open the idn.vbp
file, and skip to Step 10. Otherwise, go to Step 3.

3 Start a new Visual Basic (VB 6.0) Standard EXE project. VB 6.0
will open up a new Project1 project with a blank Form, Form1.
From the menu, select Project | Add Module, select the
Existing tab, and browse to the idn directory.

4 The idn example files are located in directory vb\samples\idn.
Select the file idn.bas and click Open.

5 Since the Main() subroutine Is executed when the program is run
without requiring user interaction with a Form, Form1 may be
deleted if desired. To do this, right-click Form1 in the Project
Explorer window and select Remove Forml.

6 SICL applications in Visual Basic require that the SICL Visual
Basic declaration file sicl4.bas module be added to your VB
project. This file contains the SICL function definitions and
constant declarations needed to make SICL calls from Visual
Basic.

Chapter 2 31

Getting Started with SICL
Getting Started Using Visual Basic

10

11

12

To add this module to your project, from the menu select
Project | Add Module, select the Existing tab, browse to the
vb\ directory under the IO Libraries install directory, select
sicl4.bas, and click Open.

At this point, the Visual Basic project can be run and debugged.
You will need to edit the idn.bas module code to change the SICL
Interface Name and address in the code to match your device
configuration.

The program assumes the SICL interface name is hpib7 (set using
IO Config) and the instrument is at bus address 22. If necessary,
modify the interface name and instrument address.

If the program runs correctly, an example of the output if connected
to a Hewlett-Packard 34401A Multimeter would be:

HEWLETT-PACKARD, 34401A,0,4-1-1

If you want to make an executable file, from the menu select
File | Make idn.exe. . .and click Open. This will create
idn.exe in the idn directory.

If the program does not run, see the message logger for a list of
run-time errors and see Appendix B - Troubleshooting SICL
Programs for guidelines to correct the problem.

Where to Go Next

Go to Chapter 3 - Programming with SICL. In addition, you should see the
chapter(s) that describe how to use SICL with your specific interface(s):

Chapter 4 - Using SICL with GPIB
Chapter 5 - Using SICL with GPIO
Chapter 6 - Using SICL with VXI
Chapter 7 - Using SICL with RS-232
Chapter 8 - Using SICL with LAN

You may also want to familiarize yourself with SICL functions, defined in
Chapter 9 - SICL Language Reference and in the reference information
provided in SICL online Help. If you have any problems, see Appendix B -
Troubleshooting SICL Programs.

32

Chapter 2

Programming with SICL

33

Programming with SICL

This chapter describes how to build a SICL application and then describes
SICL programming techniques. Example programs are also provided to help
you develop SICL applications. The chapter includes:

Building a SICL Application

Opening a Communications Session
Sending 1/0 Commands

Handling Asynchronous Events
Handling Errors

Using Locks

Additional Example Programs

NOTE

Copies of the example programs are located in the C\SAMPLES\MISC
subdirectory (for C/C++) or in the VB\SAMPLES\MISC subdirectory (for
Visual Basic) under the base IO Libraries directory. For details on SICL
functions, see Chapter 9 - SICL Language Reference or SICL online
Help.

34 Chapter 3

Programming with SICL
Building a SICL Application

Building a SICL Application

This section gives guidelines to build a SICL application in a Windows
environment.

Including the SICL Declaration File

For C and C++ programs, you must include the sicl.h header file at the
beginning of every file that contains SICL function calls. This header file
contains the SICL function prototypes and the definitions for all SICL
constants and error codes.

#include “sicl.h”

For Visual Basic version 3.0 or earlier programs, you must add the
SICL.BAS file to each project that calls SICL. For Visual Basic version 4.0
or later programs, you must add the SICL4.BAS file to each project that calls
SICL.

Libraries for C Applications and DLLs

All WIN32 applications and DLLs that use SICL must link to the SICL32.LIB
import library. (Borland compilers use BCSICL32.DLL.)

The SICL libraries are located in the C directory under the IO Libraries base
directory (for example, C:\Program Files\Agilent\IO Libraries\C if you
installed SICL in the default location). You may want to add this directory to
the library file path used by your language tools.

Use the DLL version of the C run-time libraries, because the run-time
libraries contain global variables that must be shared between your
application and the SICL DLL.

If you use the static version of the C run-time libraries, these global variables
will not be shared and unpredictable results could occur. For example, if you
use isscanf with the $F format, an application error will occur. The
following sections describe how to use the DLL versions of the run-time
libraries.

Chapter 3 35

Microsoft Visual

C++ Compilers

Programming with SICL
Building a SICL Application

Compiling and Linking C Applications

A summary of important compiler-specific considerations follows for several
C/C++ compiler products when developing WIN32 applications.

NOTE

If you are using a version of the Microsoft or Borland compilers other than
those listed in this subsection, the menu structure and selections may be
different than indicated here. However, the equivalent functionality exists
for your specific version.

1 Select Project | Settings or Build | Settings from
the menu (depending on the version of your compiler).

2 Click the c/c++ button. Then, select Code Generation from
the Category list box and select Multithreaded Using DLL
from the Use Run-Time Library list box. Click OK to close the dialog
box.

3 Select Project | Settings or Build | Settings from
the menu. Click the Link button. Then, add sic/32./ib to the
Object/Library Modules list box. Click OK to close the dialog box.

4 You may want to add the SICL C directory (for example,
C:\Program Files\Agilent\IO Libraries\C to the include file and
library file search paths. To do this, select Tools | Options
from the menu and click the Directories button. Then:

B To set the include file path, select Include Files from
the Show Directories for: list box. Next, click the Add button
and type C:\Program Files\Agilent\lO Libraries\C. Then, click
OK.

B To set the library file path, select Library Files from the
Show Directories for: list box. Next, click the Add button and
type C:\Program Files\Agilent\lO Libraries\C. Then, click OK.

36 Chapter 3

Borland C++

Version 4.0
Compilers

Programming with SICL
Building a SICL Application

1 Link your programs with BCSICL32.LIB (not SICL32.LIB) .
BCSICL32.LIB is located in the C subdirectory under the SICL
base directory (for example, C:\Program Files\Agilent\

IO Libraries\C if SICL is installed in the default location).

2 Editthe BCC32.CFG and TLINK32.CFG files, located in the
BIN subdirectory of the Borland C installation directory.

B Add the following line to BCC32.CFG so the compiler can
find the sicl.h file: -IC: \/O_base_dinC, where IO_base_dir
is the IO Libraries base directory.

B Add the following line to both files so the compiler and linker
can find BCSICL32.LIB: -LC:\IO_base_dinC, where
10_base_diris the IO Libraries base directory.

B For example, to create MYPROG.EXE from MYPROG.C,
type: BCC32 MYPROG.C BCSICL32.LIB

Loading and Running Visual Basic Applications

To load and run an existing Visual Basic application, first run Visual Basic.
Then, open the project file for the program you want to run by selecting
File | Open Project from the Visual Basic menu. Visual Basic project
files have a .MAK file extension. After you haved opened the application’s
project file, you can run the application by pressing F5 or the Run button on
the Visual Basic Toolbar.

You can create a standalone executable (.EXE) version of this program by
selecting File | Make EXE File from the Visual Basic menu. Once this
is done, the application can be run stand-alone (just like any other . EXE file)
without having to run Visual Basic.

Chapter 3 37

Programming with SICL
Building a SICL Application

Thread Support for 32-bit Windows Applications

SICL can be used in multi-threaded designs and SICL calls can be made
from multiple threads, in WIN32 applications. However, there are some
important points:

B SICL error handlers (installed with ionerror) are per process
(not per thread) but are called in the context of the thread that
caused the error to occur. Calling ionerror from one thread will
overwrite any error handler presently installed by another thread.

B The igeterrno is per thread and returns the last SICL error that
occurred in the current thread.

B You may want to make use of the SICL session locking functions
(ilock and iunlock) to help coordinate common instrument
accesses from more than one thread.

B See Chapter 8 - Using SICL with LAN for thread information when
using SICL with LAN.

38 Chapter 3

Programming with SICL
Opening a Communications Session

Opening a Communications Session

A communications session is a channel of communication with a particular
device, interface, or commander:

B A device session is used to communicate with a device on an
interface. A device is a unit that receives commands from a
controller. Typically a device is an instrument but could be a
computer, a plotter, or a printer.

B An interface session is used to communicate with a specified
interface. Interface sessions allow you to use interface-specific
functions (for example, igpibsendcmd).

B A commander session is used to communicate with the interface’s
commander. Typically a commander session is used when a
computer is acting like a device.

Steps to Open a Communications Session

There are two parts to opening a communications session with a specific
device, interface, or commander. First, you must declare a variable for the
SICL session identifier. C and C++ programs should declare the session
variable to be of type INST. Visual Basic programs should declare the
session variable to be of type Integer. Once the variable is declared,
you can open the communication channel by using the SICL iopen
function, as shown in the following example.

C example:

INST id;
id = iopen (addr);

Visual Basic example:

Dim id As Integer
id = iopen (addr)

Where id is the session identifier used to communicate to a device,
interface, or commander. The addr parameter specifies a device or interface
address, or the term emdr for a commander session. See the sections that
follow for details on creating the different types of communications sessions.

Chapter 3 39

Addressing Device
Sessions

Programming with SICL
Opening a Communications Session

Your program may have several sessions open at the same time by creating
multiple session identifiers with the iopen function. Use the SICL iclose
function to close a channel of communication.

Device Sessions

A device session allows you direct access to a device without knowing the
type of interface to which the device is connected. On GPIB, for example,
you do not have to address a device to listen before sending data to it. This
insulation makes applications more robust and portable across interfaces,
and is recommended for most applications.

Device sessions are the recommended way of communicating using SICL.
They provide the highest level programming method, best overall
performance, and best portability.

To create a device session, specify the interface logical unit or symbolic
name and a specific device logical address in the addr parameter of the
iopen function. The logical unit is an integer corresponding to the interface.

The device address generally consists of an integer that corresponds to the
device’s bus address. It may also include a secondary address which is an

integer. (Secondary addressing is not supported on S-232 interfaces.) The

following are valid device addresses:

7,23 Device at address 23 connected to an interface card at
logical unit 7.
7,23,1 Device at address 23, secondary address 1, connected

to an interface card at logical unit 7.

hpib,23 GPIB device at address 23.

hpib2,23,1 GPIB device at address 23, secondary address 1,
connected to a second GPIB interface card.

com1,488 RS-232 device

The interface logical unit and symbolic name are set by running the 10
Config utility from the Agilent IO Libraries Control (on the taskbar) for
Windows 95, Windows 98, Windows Me, Windows 2000, or Windows NT.
See the Agilent IO Libraries Installation and Configuration Guide for
Windows for information on the IO Config utility.

40 Chapter 3

Examples: Opening
a Device Session

Addressing Interface
Sessions

Programming with SICL
Opening a Communications Session

The following examples open a device session with a GPIB device at
address 23.

C example:

INST dmm;
dmm = iopen (“hpib,23”);

Visual Basic example:

Dim dmm As Integer
dmm = iopen (“hpib,23")

Interface Sessions

An interface session allows direct, low-level control of the specified interface.
A full set of interface-specific SICL functions existds for programming
features that are specific to a particular interface type (GPIB, Serial, etc.).
This provides full control of the activities on a given interface, but does
create less portable code.

To create an interface session, specify the particular interface logical unit or
symbolic name in the addr parameter of the iopen function. The interface
logical unit and symbolic name are set by running the IO Config utility from
the Agilent IO Libraries Control (on the taskbar) for Windows 95, Windows
98, Windows Me, Windows 2000, or Windows NT. See the Agilent |10
Libraries Installation and Configuration Guide for Windows for information
on the 10 Config utility.

The logical unit is an integer that corresponds to a specific interface. The
symbolic name is a string which uniquely describes the interface. The
following are valid interface addresses:

7 Interface card at logical unit 7
hpib GPIB interface card.

hpib2 Second GPIB interface card.
com1 RS-232 interface card.

Chapter 3 41

Examples: Opening
an Interface Session

Addressing
Commander
Sessions

Examples: Creating
a Commander
Session

Programming with SICL
Opening a Communications Session

These examples open an interface session with an RS-232 interface.

C example:
INST coml;
coml = iopen (“coml”);

Visual Basic example:

Dim coml As Integer
coml = iopen (“coml”)

Commander Sessions

A commander session allows your computer to talk to the interface controller.
Typically, the controller is the computer used to communicate with devices
on the interface. When the computer is not active controller, commander
sessions can be used to talk to the computer that is active controller. In this
mode, the computer is acting like a device on the interface.

To create a commander session, specify a valid interface address followed
by a comma and then the string emdr in the iopen function. The following
are valid commander addresses:

hpib,cmdr GPIB commander session.

7,cmdr Commander session on interface at logical unit 7.

These examples create a commander session with the GPIB interface.
The function calls open a session of communication with the commander
on a GPIB interface.

C example:
INST cmdr;
cmdr = iopen (“hpib,cmdr”) ;

Visual Basic example:

Dim cmdr As Integer
cmdr = iopen (“hpib,cmdr”)

42 Chapter 3

Programming with SICL
Sending I/0 Commands

Sending I/0 Commands

Once you have established a communications session with a device,
interface, or commander, you can start communicating with that session
using SICL’s I/O routines. SICL provides formatted 1/O and non-formatted
I/0 routines.

B Formatted I/0 converts mixed types of data under the control of a
format string. The data is buffered, thus optimizing interface traffic.
The formatted I/O routines are geared towards instruments, and
reduce the amount of 1/0O code.

B Non-formatted I/0O sends or receives raw data to a device, interface,
or commander. With non-formatted 1/O, no format or conversion of
the data is performed. Thus, if formatted data is required, it must be
done by the user.

Formatted I/0O in C Applications

The SICL formatted 1/0O mechanism is similar to the C stdio mechanism.
SICL formatted I/O, however, is designed specifically for instrument
communication and is optimized for IEEE 488.2 compatible instruments.
The three main functions for formatted I/O in C applications are:

B The iprintf function formats according to the format string and
sends data to a device:
iprintf (id, format [,arg1],arg2][,...]) ;

B The iscanf function receives and converts data according to the
format string:
iscanf(id, format [,arg1][,arg2]],...]);

B The ipromptf£ function formats and sends data to a device and
then immediately receives and converts the response data:
iprompt £(id, writefmt, readfmt [,arg1]j[,arg2],...]);

The formatted 1/O functions are buffered. Also, there are two non-buffered
and non-formatted 1/O functions called iread and iwrite. (See “Non-
Formatted 1/O” later in this chapter.) These are raw |/O functions and do
not intermix with formatted 1/O functions.

Chapter 3 43

Formatted 1/0

Programming with SICL
Sending I/0 Commands

If raw I/O must be mixed, use the i fread/ifwrite functions. These
functions have the same parameters as iread and iwrite, but read or
write raw output data to the formatted I/O buffers. See “Formatted I/O
Buffers” in this section for more details.

Formatted 1/O functions convert data under the control of the format string.

Conversion The format string specifies how the argument is converted before it is input
or output. A typical format string syntax is:
$[format flags][field width][. precision]
[, array size] [argument modifier]format code
See iprintf, ipromptf, and iscanf in Chapter 9 - SICL Language
Reference for more information on how data is converted under the control
of the format string
Format Flags
Zero or more flags may be used to modify the meaning of
the format code. The format flags are only used when sending formatted 1/0
(iprintf and ipromptf). Supported format flags are:
Format Flag Description
Q1 Converts to a 488.2 NR1 number.
@2 Converts to a 488.2 NR2 number.
@3 Converts to a 488.2 NR3 number.
@H Converts to a 488.2 hexadecimal number.
@Q Converts to a 488.2 octal number.
@B Converts to a 488.2 binary number.
+ Prefixes number with sign (+ or —).
- Left justifies result.
space Prefixes number with blank space if positive or with — if negative.
Uses alternate form. For o conversion, it prints a leading zero. For x
or X, a nonzero will have Ox or OX as a prefix. For e, E, f, g, or G, the
result will always have one digit on the right of the decimal point.
0 Causes left pad character to be a zero for all numeric conversion
types.

44 Chapter 3

Programming with SICL
Sending I/0 Commands

This example converts numb into a 488.2 floating point number and sends
the value to the session specified by id:

int numb = 61;
iprintf (id, “%Q@2d&\n”, numb);

Sends: 61.000000
Field Width

Field width is an optional integer that specifies how many characters are in
the field. If the formatted data has fewer characters than specified in the field
width, it will be padded. The padded character is dependent on various
flags. You can use an asterisk (*) in place of the integer to indicate that the
integer is taken from the next argument.

This example pads numb to six characters and sends the value to the
session specified by id:

long numb = 61;
iprintf (id, “%6lds&\n”, numb) ;

Pads to six characters: 61
. Precision

Precision is an optional integer preceded by a period. When used with
format codes e, E, and £, the number of digits to the right of the decimal
point are specified. Forthed, i, o, u, x, and X format codes, the
minimum number of digits to appear is specified. For the s and s format
codes, the precision specifies the maximum number of characters to be read
from the argument.

This field is only used when sending formatted I/O (iprintf and
ipromptf£). You can use an asterisk (*) in place of the integer to indicate
that the integer is taken from the next argument.

This example converts numb so that there are only two digits to the right of
the decimal point and sends the value to the session specified by id:

float numb = 26.9345;
iprintf (id, “.2f\n”, numb);

Sends : 26.93

Chapter 3 45

Programming with SICL
Sending I/0 Commands

, Array Size

The comma operator is a format modifier which allows you to read or write a
comma-separated list of numbers (only valid with $d and % £ format codes).
It is a comma followed by an integer. The integer indicates the number of
elements in the array. The comma operator has the format of , dd where dd
is the number of elements to read or write. This example specifies a comma-
separated list to be sent to the session specified by id:

int 1ist[5]={101,102,103,104,105};
iprintf (id, “%,5d\n”, list);

Sends: 101,102,103,104,105
Argument Modifier

The meaning of the optional argument modifierh, 1, w, =z, orzis
dependent on the format code.

Argument Modifiers in C Applications

Argument |Format Codes Description
Modifier

d,i Corresponding argument is a short integer.

Corresponding argument is a float for iprintf
or a pointer to a float for iscan€.

1 d,i Corresponding argument is a long integer.

1 b,B Corresponding argument is a pointer to a block
of long integers.

1 £ Corresponding argument is a double for iprint£f
or a pointer to a double for iscanf.

w b,B Corresponding argument is a pointer to a block
of short integers.

z b,B Corresponding argument is a pointer to a block
of floats.

Z b,B Corresponding argument is a pointer to a block
of doubles.

46 Chapter 3

Programming with SICL
Sending I/0 Commands

Format Codes

The format codes for sending and receiving formatted I/O are different. The
following tables summarize the format codes for each.

iprintf and ipromptf format codes in C Applications

Format Codes Description
d, i Corresponding argument is an integer.
£ Corresponding argument is a float.
b,B Corresponding argument is a pointer to an arbitrary block
of data.
c,C Corresponding argument is a character.
t Controls whether the END indicator is sent with each LF

character in the format string.

s,S Corresponding argument is a pointer to a null terminated
string.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument will be treated as an unsigned
integer.

e,E,g,G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

F Corresponding argument is a pointer to a FILE descriptor

opened for reading.

This example sends an arbitrary block of data to the session specified by the
id parameter. The asterisk (*) is used to indicate that the number is taken
from the next argument:

int size = 1024;
char data [10247];

iprintf (id, “%*b&\n”, size, data);
Sends 1024 characters of block data.

Chapter 3 47

Example: Formatted
/0 (C)

Programming with SICL
Sending I/0 Commands

iscanf and ipromptf Format Codes in C Applications

Format Codes Description

d,i,n Corresponding argument must be a pointer to an integer.

e, f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character.

s,S,t Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an unsigned
integer.

[Corresponding argument must be a character pointer.

F Corresponding argument is a pointer to a FILE descriptor
opened for writing.

This example receives data from the session specified by the id parameter
and converts the data to a string:

char data[180];
iscanf (id, “%s”, data);

This C program example shows one way to send and receive formatted I/O.
This example opens an GPIB communications session with a multimeter
and uses a comma operator to send a comma-separated list to the
multimeter. The If format codes are used to receive a double from the
multimeter.

/* formatio.c
This example program makes a multimeter measurement
with a comma-separated list passed with formatted
I/0 and prints the results */

#include <sicl.h>

#include <stdio.h>

main ()

{
INST dvm;
double res;
double 1list[2] = {1,0.001};

#if defined(BORLANDC) && !defined(WIN32)
_InitEasyWin(); /*Required for Borland EasyWin programs*/
#endif

48 Chapter 3

Format String

Programming with SICL
Sending I/0 Commands

/* Log message and terminate on error */
ionerror (I _ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“hpib7,16");
itimeout (dvm, 10000);

/*Initialize dvm*/
iprintf (dvm, “*RST\n”);

/*Set up multimeter and send comma-separated list*/
iprintf (dvm, “CALC:DBM:REF 50\n”);
iprintf (dvm, “MEAS:VOLT:AC? %,21f\n”, list);

/* Read the results */
iscanf (dvm,”%1f”,&res);

/* Print the results */
printf (“Result is %f\n”,res);

/* Close the multimeter session */
iclose (dvm);

/* This is a no-op for WIN32 programs.*/
_siclcleanup();
return 0;

The format string for iprintf puts a special meaning on the newline
character (\n). The newline character in the format string flushes the output
buffer to the device. All characters in the output buffer will be written to the
device with an END indicator included with the last byte (the newline
character). This means you can control at what point you want the data
written to the device.

If no newline character is included in the format string for an iprintf£ call,
the characters converted are stored in the output buffer. It will require
another call to iprint£ or a call to if1lush to have those characters
written to the device.

Chapter 3 49

Formatted 1/0
Buffers

Programming with SICL
Sending I/0 Commands

This can be very useful in queuing up data to send to a device. It can also
raise 1/0 performance by doing a few large writes instead of several smaller
writes. This behavior can be changed by the isetbuf and isetubuf
functions. See “Formatted 1/0 Buffers” for details.

The format string for iscanf ignores most white-space characters.

Two white-space characters that it does not ignore are newlines (\n) and
carriage returns (\r). These characters are treated just like normal
characters in the format string, which must match the next non-white-space
character read from the device.

The SICL software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers. See the isetbuf function for other options for buffering data.

The write buffer is maintained by the iprintf£ and the write portion of the
ipromptf functions. It queues characters to send to the device so that they
are sent in large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from the format
string (see the %t format code to change this feature).

The write buffer also flushes immediately after the write portion of the
ipromptf function. It may occasionally be flushed at other non-
deterministic times, such as when the buffer fills. When the write buffer
flushes, it sends its contents to the device.

The read buffer is maintained by the iscanf and the read portion of the
ipromptf functions. The read buffer queues the data received from a
device until it is needed by the format string. The read buffer is automatically
flushed before the write portion of an iprompt£. Flushing the read buffer
destroys the data in the buffer and guarantees that the next call to iscanf
or ipromptf reads data directly from the device rather than data that was
previously queued.

NOTE

Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator
from the device.

50 Chapter 3

Related Formatted
I/O Functions

Programming with SICL
Sending I/0 Commands

A set of functions related to formatted 1/0O follows.

1/0 Function Description

ifread Obtains raw data directly from the read formatted 1/O buffer.
This is the same buffer that iscanf uses.

ifwrite Writes raw data directly to the write formatted 1/O buffer. This is
the same buffer that iprintf uses.

iprintf Converts data via a format string and writes the arguments
appropriately.

iscanf Reads data from a devicel/interface, converts this data via a
format string, and assigns the values to your arguments.

iprompt£f Sends, then receives, data from a device/instrument. It also
converts data via format strings that are identical to iprintf
and iscanf.

iflush Flushes the formatted I/O read and write buffers. A flush of the
read buffer means that any data in the buffer is lost. A flush of
the write buffer means that any data in the buffer is written to
the session’s target address.

isetbuf Sets the size of the formatted 1/O read and the write buffers.
A size of zero (0) means no buffering. If no buffering is used,
performance can be severely affected.

isetubuf Sets the read or the write buffer to your allocated buffer.

The same buffer cannot be used for both reading and writing.
Also you should be careful when using buffers that are
automatically allocated.

Chapter 3

51

Formatted I/O
Conversion

Programming with SICL
Sending I/0 Commands

Formatted 1/O in Visual Basic Applications

SICL formatted I/O is designed specifically for instrument communication
and is optimized for IEEE 488.2 compatible instruments. The two main
functions for formatted I/O in Visual Basic applications are:

B The ivprintf function formats according to the format string and
sends data to a device:

Function ivprintf (id As Integer, fmt As String,
ap As Any) As Integer

B The ivscanf function receives and converts data according to the
format string:

Function ivscanf (id As Integer, fmt As String,
ap As Any) As Integer

NOTE

There are certain restrictions when using ivprintf and ivscanf with
Visual Basic. For details about these restrictions, see “Restrictions Using
ivprintf in Visual Basic” in the iprint£ function or “Restrictions
Using ivscanf in Visual Basic” in the iscanf function in Chapter 9 -
SICL Language Reference.

The formatted 1/O functions are buffered. There are two non-buffered and
non-formatted 1/O functions called iread and iwrite. (See “Non-
Formatted 1/O” later in this chapter.) These are raw I/O functions and do not
intermix with the formatted 1/O functions.

If raw I/O must be mixed, use the ifread/ifwrite functions. They have
the same parameters as iread and iwrite, but read or write raw output
data to the formatted 1/O buffers. See “Formatted I/O Buffers” for details.

The formatted 1/O functions convert data under the control of the format
string. The format string specifies how the argument is converted before it is
input or output. The typical format string syntax is:

$[format flags][field width][. precision]
[, array size] [argument modifier]format code

52 Chapter 3

Programming with SICL
Sending I/0 Commands

See iprintf and iscanf in Chapter 9 - SICL Language Reference for
more information on how data is converted under the control of the format
string.

Format Flags

Zero or more flags may be used to modify the meaning of the format code.
The format flags are only used when sending formatted I/O (ivprintf£).
Supported format flags are:

Format Flags for ivprintf in Visual Basic Applications

Format Description
Flag

@1 Converts to a 488.2 NR1 number.

@2 Converts to a 488.2 NR2 number.

@3 Converts to a 488.2 NR3 number.

QH Converts to a 488.2 hexadecimal number.
@Q Converts to a 488.2 octal number.

@B Converts to a 488.2 binary number.

+ Prefixes number with sign (+ or -).

- Left justifies result.

space Prefixes number with blank space if positive or with — if
negative.
Uses alternate form. For o conversion, it prints a leading zero.

For x or X, a nonzero will have Ox or 0X as a prefix. For e, E, f,
g, or G, the result will always have one digit on the right of the
decimal point.

0 Causes left pad character to be a zero for all numeric
conversion types.

This example converts numb into a 488.2 floating point number to the
session specified by id. The function return values must be assigned to
variables for all Visual Basic function calls. Also, + Chr$ (10) adds the
newline character to the format string to indicate that the formatted 1/O write
buffer should be flushed. (This is equivalent to the \n character sequence
used for C/C++ programs.

Chapter 3 53

Programming with SICL
Sending I/0 Commands

Dim numb As Integer
Dim ret val As Integer

numb = 61
ret val = ivprintf (id, “%@2d” + Chr$(10), numb)

Sends: 61.000000
Field Width

Field width is an optional integer that specifies how many characters are in
the field. If the formatted data has fewer characters than specified in the field
width, it will be padded. The padded character is dependent on various
flags. This example pads numb to six characters and sends the value to the
session specified by id:

Dim numb As Integer
Dim ret val As Integer

numb = 61
ret val = ivprintf (id, “%6d” + Chr$(10), numb)
Pads to six characters: 61

. Precision

Precision is an optional integer preceded by a period. When used with
format codes e, E, and £, the number of digits to the right of the decimal
point are specified. Forthed, i, o, u, x, and X format codes, the
minimum number of digits to appear is specified. This field is only used
when sending formatted 1/0 (ivprint£).

This example converts numb so there are only two digits to the right of the
decimal point and sends the value to the session specified by id:

Dim numb As Double
Dim ret val As Integer

numb = 26.9345
ret val = ivprintf (id, “%.21f” + Chr$(10), numb)

Sends : 26.93
, Array Size

The comma operator is a format modifier which allows you to read or write a
comma-separated list of numbers (only valid with $d and % £ format codes).
It is a comma followed by an integer. The integer indicates the number of
elements in the array. The comma operator has the format of , dd where dd
is the number of elements to read or write.

54 Chapter 3

Programming with SICL
Sending I/0 Commands

This example specifies a comma separated list to be sent to the session
specified by id:

Dim list (4)

As Integer

Dim ret val As Integer

ret val

= 101
102
103
104
= 105

ivprintf (id, “%,5d” + Chr$(10), list(0))

Sends: 101,102,103,104,105

Argument Modifier

The meaning of the optional argument modifierh, 1, w, z, orZis

dependent on the format code.

Argument Modifiers in Visual Basic Application

Argument Format Description
Modifier Codes
h d, i Corresponding argument is an Integer.
h £ Corresponding argument is a Single.
1 d, i Corresponding argument is a Long.
1 d,B Corresponding argument is an array of Long.
1 £ Corresponding argument is a Double.
w d,B Corresponding argument is an array of Integer.
z d,B Corresponding argument is an array of Single.
Z d,B Corresponding argument is an array of Double.

Chapter 3

55

Programming with SICL
Sending I/0 Commands

Format Codes

The format codes for sending and receiving formatted I/O are different. The

following tables summarize the format codes for each:

ivprintf format codes in Visual Basic Applications

Format Codes

Description

d, i Corresponding argument is an Integer.

b, B Not supported on Visual Basic.

c,C Not supported on Visual Basic.

t Not supported on Visual Basic.

s,S Not supported on Visual Basic.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument will be treated as an Integer.
f,e,E,g,G Corresponding argument is a Double.

n Corresponding argument is an Integer.

F Corresponding arg is a pointer to a FILE descriptor.

ivscanf format codes in Visual Basic Applications

Format Codes Description
d,i,n Corresponding argument must be an Integer.
e, f,g Corresponding argument must be a Single.
c Corresponding argument is a fixed length String.
s,S,t Corresponding argument is a fixed length String.
o,u,x Corresponding argument must be an Integer.
[Corresponding argument must be a fixed length character String.
F Not supported on Visual Basic.

This example receives data from the session specified by the id parameter

and converts the data to a string:

Dim ret val As Integer
Dim data As String * 180

ret val =

ivscanf (id, “%180s”, data)

56

Chapter 3

Programming with SICL
Sending I/0 Commands

Example: Formatted option Explicit

I/O(VlsuaIBaSIC) rryrryryyryryryryryryryryrryrrrryrryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrvrurou
' nonfmt.bas
' The following subroutine measures AC voltage on a
' multimeter and prints out the results.

rryrryryrryryvryrvryryryrvrrrrrrvrrrrrrrvrrrrrrrrrrrrrrrrrrrrrrrrrrrrvn

Sub Main ()
Dim dvm As Integer
Dim strres As String * 20 'Fixed-length String
Dim actual As Long

' Open the multimeter session
' "hpib7" is the SICL Interface name as defined in:
' Start | Programs | Agilent IO Libraries | IO Config
' "23" is the instrument gpib address on the bus
' Change these to the SICL Name and gpib address for
' your nstrument

dvm = iopen ("hpib7,23")

Call itimeout (dvm, 5000)

! Initialize dvm
Call iwrite (dvm, "*RST" + Chr$(10), 5, 1, 0&)

' Set up multimeter and take measurements
Call iwrite(dvm, "CALC:DBM:REF 50" + Chr$(10),
16, 1, 0&)
Call iwrite(dvm, "MEAS:VOLT:AC? 1, 0.001"
+ Chr$(10), 23, 1, 0s) B

' Read measurements
Call iread(dvm, strres, 20, 0&, actual)

' Display the results
MsgBox "Result is " + Left$(strres, actual)

' Close the multimeter session

Call iclose (dvm)
' Tell SICL to cleanup for this task

Call siclcleanup

Exit Sub
End Sub

Chapter 3 57

Format String

Formatted I/O
Buffers

Programming with SICL
Sending I/0 Commands

In the format string for ivprint£, when the special characters Chr$(10)

is used the output buffer to the device is flushed. All characters in the output
buffer will be written to the device with an END indicator included with the
last byte. This means you can control at what point you want the data written
to the device.

If no Chr$(10) is included in the format string for an ivprint£ call, the
characters converted are stored in the output buffer. It will require another
call to ivprintf or a call to if1lush to have those characters written to
the device. This can be very useful in queuing up data to send to a device.
It can also raise 1/0 performance by doing a few large writes instead of
several smaller writes.

The format string for ivscanf ignores most white-space characters. Two
white-space characters that it does not ignore are newlines (Chr$(10)) and
carriage returns (Chr$(13)). These characters are treated just like normal
characters in the format string, which must match the next non-white-space
character read from the device.

The SICL software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers.

The write buffer is maintained by the ivprint£ function. It queues
characters to send to the device so that they are sent in large blocks,

thus increasing performance. The write buffer automatically flushes when it
sends a newline character from the format string. The write buffer may
occasionally be flushed at other non-deterministic times, such as when the
buffer fills. When the write buffer flushes, it sends its contents to the device.

The read buffer is maintained by the ivscanf function. It queues the data
received from a device until it is needed by the format string. Flushing the
read buffer destroys the data in the buffer and guarantees that the next call
to ivscanf reads data directly from the device rather than data that was
previously queued.

NOTE

Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator
from the device.

58 Chapter 3

Related Formatted

I/O Functions

iread Function

iwrite Function

Programming with SICL
Sending I/0 Commands

This set of functions are related to formatted I/O in Visual Basic:

1/0 Function Description

ifread Obtains raw data directly from the read formatted
I/O buffer. This is the same buffer that ivscanf uses.

ifwrite Writes raw data directly to the write formatted 1/O buffer.
This is the same buffer that ivprintf uses.

ivprintf Converts data via a format string and converts the
arguments appropriately.

ivscanf Reads data from a device/interface, converts data via a
format string, and assigns the value to your arguments.

iflush Flushes the formatted I/O read and write buffers. A flush
of the read buffer means that any data in the buffer is
lost. A flush of the write buffer means that any data in
the buffer is written to the session’s target address.

Non-Formatted I/O

There are two non-buffered, non-formatted I/O functions called iread and
iwrite. These are raw I/O functions and do not intermix with the formatted
I/0O functions. If raw I/O must be mixed, use the ifread and ifwrite
functions that have the same parameters as iread and iwrite, but
read/write raw data from/to the formatted 1/O buffers.

The iread function reads raw data from the device or interface specified by
the id parameter and stores the results in the location where buf is pointing.

iread (id, buf, bufsize, reason, actualcnt) ; (C example)
Call iread (id, buf, bufsize, reason, actualcnt) (VB example)

The iwrite function sends the data pointed to by buf to the interface or
device specified by id:

iwrite (id, buf, datalen, end, actualcnt) ; (C example)
Call iwrite (id, buf, datalen, end, actualcnt) (VB example)

Chapter 3 59

Example: Non-
Formatted 1/0 (C)

Programming with SICL
Sending I/0 Commands

This C language program illustrates using non-formatted I/O to
communicate with a multimeter over the GPIB interface. The SICL non-
formatted I/O functions iwrite and iread are used for communication.

A similar example was used to illustrate formatted I/O earlier in this chapter.

/* nonfmt.c

This example program measures AC voltage on a

multimeter and prints the results*/

#include <sicl.h>
#include <stdio.h>

main ()

{

INST dvm;
char strres[20];
unsigned long actual;

#if defined(BORLANDC) && !defined(WIN32)

7InitEasyWin?); /*required for Borland EasyWin */

/* programs*/
#endif

/* Log message and terminate on error */
ionerror (I _ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“hpib7,16");
itimeout (dvm, 10000);

/*Initialize dvm*/
iwrite (dvm, “*RST\n”, 5, 1, NULL);

/*Set up multimeter and take measurements*/
iwrite (dvm,” CALC:DBM:REF 50\n”,16,1,NULL) ;
iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”,23,1,NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, &actual);

/* NULL terminate result string and print the results*/
/* This technique assumes the last byte sent was a line-

feed */

60

Chapter 3

Programming with SICL
Sending I/0 Commands

if (actual) {
strres[actual - 1] = (char) O0;
printf ("Result is %s\n”, strres);
}
/* Close the multimeter session */
iclose (dvm) ;
/* This call is a no-op for WIN32 programs.*/
_siclcleanup();
return 0; }

Example: Non- ‘" nonfmt.bas
Formatted 1/0 ‘" The following subroutine measures AC voltage on a
(VmualBagc) ‘" multimeter and prints the results.

Sub Main ()

Dim dvm As Integer
Dim strres As String * 20
Dim actual As Long

‘" Open the multimeter session
dvm = iopen (“hpib7,16”)
Call itimeout (dvm, 10000)

‘' Initialize dvm
Call iwrite (dvm,ByVal “*RST” + Chr$(10), 5, 1, 0&)

V' Set up multimeter and take measurements
Call iwrite (dvm,ByVal “CALC:DBM:REF 50”7 +
Chr$(10),16,1, 0&)

Call iwrite(dvm,ByVal “MEAS:VOLT:AC? 1, 0.001” +
Chr$(10),23,1, 0&)

‘" Read measurements
Call iread(dvm,ByVal strres, 20, 0&, actual)
‘" Print the results
Print “Result is “ + Left$(strres, actual)
‘" Close the multimeter session
Call iclose (dvm)
‘" Tell SICL to clean up for this task
Call siclcleanup
Exit Sub
End Sub

Chapter 3 61

Programming with SICL
Handling Asynchronous Events

Handling Asynchronous Events

Asynchronous events are events that happen outside the control of your
application. These events include Service ReQuests (SRQs) and
interrupts. An SRQ is a notification that a device requires service. Both
devices and interfaces can generate SRQs and interrupts.

NOTE

SICL allows installation of SRQ and interrupt handlers in C programs, but
does not support them in Visual Basic programs.

By default, asynchronous events are enabled. However, the library will not
generate any events until the appropriate handlers are installed in your
program.

If an application uses asynchronous events (ionsrq, ionintr), a callback
thread is created by the underlying SICL implementation to service the
asynchronous event. This thread will not be terminated until some other
thread of the application performs an ExitProcess on Windows 95,
Windows 98, or Windows Me, or calls iclose on Windows NT or Windows
2000. Some example declarations are:

void SICLCALLBACK my int handler (INST id, int reason,
long sec) {
/* your code here */

}

void SICLCALLBACK my srg handler (INST id) {
/* your code here */

}

SRQ Handlers

The ionsrqg function installs an SRQ handler. The currently installed SRQ
handler is called any time its’ corresponding device generates an SRQ.

If an interface is unable to determine which device on the interface
generated the SRQ, all SRQ handlers assigned to that interface will be
called.

62 Chapter 3

Programming with SICL
Handling Asynchronous Events

Therefore, an SRQ handler cannot assume that its’ corresponding device
generated an SRQ. The SRQ handler should use the ireadstb function to
determine whether its device generated an SRQ. If two or more sessions
refer to the same device, the handlers for each of the sessions are called.

Interrupt Handlers

Two distinct steps are required for an interrupt handler to be called. First, the
interrupt handler must be installed. Second, the interrupt event or events
need to be enabled. The ionintr function installs an interrupt handler. The
isetintr function enables the interrupt event or events.

An interrupt handler can be installed with no events enabled. Conversely,
interrupt events can be enabled with no interrupt handler installed. Only
when both an interrupt handler is installed and interrupt events are enabled
will the interrupt handler be called.

Temporarily Disabling/Enabling Asynchronous
Events

To temporarily prevent all SRQ and interrupt handlers from executing, use
the iintroff function to disable all asynchronous handlers for all sessions
in the process.

To re-enable asynchronous SRQ and interrupt handlers previously disabled
by iintroff, use the iintron function. This enables all asynchronous
handlers for all sessions in the process that had been previously enabled.
These functions do not affect the isetintr values or the handlers
(ionsrq or ionintr). The default value for both functions is on.

For operating systems that support multiple threads such as Windows 95,
Windows 98, Windows Me, Windows 2000, and Windows NT, SRQ and
interrupt handlers execute on a separate thread (a thread created and
managed by SICL). This means a handler can be executing when the
iintroff call is made. If this occurs, the handler will continue to execute
until it has completed.

An implication of this is that the SRQ or interrupt handler may need to
synchronize its operation with the application’s primary thread. This could be
accomplished via WIN32 synchronization methods or by using SICL locks,
where the handler uses a separate session to perform its work.

Chapter 3 63

Programming with SICL
Handling Asynchronous Events

Calls to iintroff/iintron may be nested, meaning that there must be
an equal number of ons and offs. Thus, calling the iintron function may
not actually re-enable interrupts.

Occasionally, you may want to suspend a process and wait until an event
occurs that causes a handler to execute. The iwaithdlr function causes
the process to suspend until an enabled SRQ or interrupt condition occurs
and the related handler executes. Once the handler completes its operation,
this function returns and processing continues.

For this function to work properly, your application must turn interrupts off
(i.e., use iintroff). The iwaithdlr function behaves as if interrupts are
enabled. Interrupts are still disabled after the iwaithdlr function has
completed.

Interrupts must be disabled if you use iwaithdlr. Use iintroff to
disable interrupts. The reason for disabling interrupts is that there may be
a race condition between the isetintr and iwaithdlr. If you only
expect one interrupt, it might come before the iwaithdlr. This may or
may not have the desired effect. For example:

ionintr (hpib, act _isr);
isetintr (hpib, I_INTR_INTFACT, 1),

iintroff ();
igpibpassctl (hpib, ba);
while (!done)

iwaithdlr (0);
iintron ()

64 Chapter 3

Using the Event
Viewer

Using the Message
Viewer

Programming with SICL
Handling Errors

Handling Errors

This section gives guidelines to handle errors in SICL, including:

B | ogging SICL Error Messages
B Using Error Handlers in C
B Using Error Handlers in Visual Basic

Logging SICL Error Messages

This section shows how to use the Event Viewer (Windows 2000 and
Windows NT) or the Message Viewer (Windows 95,Windows 98, and
Windows Me) to log SICL error messages.

B To use the Event Viewer (Windows 2000 and Windows NT),
run the Event Viewer after you run the SICL program.

B To use the Message Viewer (Windows 95, Windows 98, and
Windows Me), run the Message Viewer before you run the SICL
program.

For Windows NT and Windows 2000, SICL logs internal messages as
Windows NT/Windows 2000 events. This includes error messages logged
by the I_ERROR_EXIT and I_ERROR_NOEXIT error handlers. While
developlng your 'SICL appllcat|on or tracklng down problems, you can view
these messages by opening the the Agilent IO Libraries Control (on the
taskbar) and clicking Run Event Viewer. Both system and application
messages can be logged to the Event Viewer from SICL. SICL messages
are identified by SICL LOG or by the driver name (e.g., ag341i32).

For Windows 95, Windows 98, or Windows Me, you can use the Message
Viewer utility. This utility provides a debug window to which SICL logs
internal messages during application execution, including those logged by
the I_ERROR_EXIT and I_ERROR_NOEXIT error handlers. The Message
Viewer ut|I|ty provides menu selections for saving the logged messages to
a file, and to clear the message buffer. To start the Message Viewer utility,
open the Agilent 10 Libraries Control (on the taskbar) and click

Run Message Viewer.

Chapter 3 65

ionerror Function

Programming with SICL
Handling Errors

Using Error Handlers in C

When a SICL function call in a C/C++ program results in an error, it typically
returns a special value such as a NULL pointer or a non-zero error code.
SICL allows you to install an error handler for all SICL functions within a
C/C++ application to provide a convenient mechanism for handling errors.

Installing an error handler allows your application to ignore the return value,
and permits the error procedure to detect errors and recover. The error
handler is called before the function that generated the error completes.
Eerror handlers are per process (not per session or per thread).

The function ionerror used to install an error handler is defined as:
int ionerror (proc);
void (*proc) () ;

where:
void SICLCALLBACK proc (id, error) ;

INST id;
int error;

The routine proc is the error handler and is called whenever a SICL error
occurs. Two special reserved values of proc may be passed to the
ionerror function

I_ERROR_EXIT This value installs a special error handler which will
log a diagnostic message and then terminate the
process.

I_ERROR_NOEXIT This value installs a special error handler which will

log a diagnostic message and then allow the process
to continue execution.

This mechanism has substantial advantages over other 1/O libraries,
because error handling code is located away from the center of your
application.

66 Chapter 3

Example: Instaling
an Error Handler (C)

Programming with SICL
Handling Errors

Typically, error handling code is intermixed with the 1/0 code in an
application. However, with SICL error handling routines no special error
handling code is inserted between the 1/O calls.

Instead, a single line at the top (calling ionerror) installs an error handler
that gets called any time an error occurs. In this example, a standard,
system-defined error handler is installed that logs a diagnostic message
and then exits.

/* errhand.c
This example demonstrates how a SICL error handler
can be installed. */

#include <sicl.h>
#include <stdio.h>

main ()

{
INST dvm;
double res;

#if defined(BORLANDC) && !defined(WIN32)
_InitEasyWin(); /* Required for Borland EasyWin */
/*programs */

#endif

ionerror (I _ERROR EXIT);

dvm = iopen (“hpib7,16");

itimeout (dvm, 10000);

iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?”);
iscanf (dvm, “%1f”, &res);

printf (“Result is %1f\n”, res);

iclose (dvm);

/* This call is a no-op for WIN32 programs.*/
_siclcleanup();

return 0;

Chapter 3 67

Example: Writing an
Error Handler (C)

Programming with SICL
Handling Errors

This is an example of writing and implementing your own error handler.

NOTE

If an error occurs in iopen, the id passed to the error handler may not be
valid.

/* errhand2.c
This program shows how you can install your own error
handler*/

#include <sicl.h>

#include <stdio.h>

#include <stdlib.h>

void SICLCALLBACK err handler (INST id, int error) ({
fprintf (stderr, “Error: %s\n”, igeterrstr (error));
exit (1);

}

main () {
INST dvm;
double res;

#if defined(BORLANDC) && !defined(WIN32)

_InitEasyWin(); /* Required for Borland EasyWin
programs */

#endif

ionerror (err handler);

dvm = iopen (“hpib7,16");

itimeout (dvm, 10000);

iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?”);
iscanf (dvm, “%$1f”, &res);

printf (“Result is %1f\n”, res);

iclose (dvm);

/* This call is a no-op for WIN32 programs*/
_siclcleanup();

return 0;

68 Chapter 3

Programming with SICL
Handling Errors

Using Error Handlers in Visual Basic

Typically in an application, error handling code is intermixed with the 1/0
code. However, by using Visual Basic’s error handling capabilities, no
special error handling code need be inserted between the 1/O calls. Instead,
a single line at the top (On Error GoTo) installs an error handler in the
subroutine that gets called any time a SICL or Visual Basic error occurs.

When a SICL call results in an error, the error is communicated to Visual
Basic by setting Visual Basic’s Exr variable to the SICL error code and
Errors$ is set to a human-readable string that corresponds to Exr. This
allows SICL to be integrated with Visual Basic’s built-in error handling
capabilities. SICL programs written in Visual Basic can set up error handlers
with the Visual Basic On Error statement.

The SICL ionerror function for C programs is not used with Visual Basic.
Similarly, the I_ERROR_EXIT and I_ERROR_NOEXIT default handlers used
in C programs are not defined for Visual Basic.

When an error occurs within a Visual Basic program, the default behavior is
to display a dialog box indicating the error and then halt the program. If you
want your program to intercept errors and keep executing, you will need to
install an error handler with the On Error statement. For example:

On Error GoTo MyErrorHandler

This will cause your program to jump to code at the label MyErrorHandler
when an error occurs. Note that the error handling code must exist within the
subroutine or function where the error handler was declared.

If you do not want to call an error handler or have your application terminate
when an error occurs, you can use the On Error statement to tell Visual
Basic to ignore errors. For example:

On Error Resume Next

This tells Visual Basic to proceed to the statement following the statement
in which an error occurs. In this case, you could call the Visual Basic Exrr
function in subsequent lines to find out which error occurred.

Visual Basic error handlers are only active within the scope of the subroutine
or function in which they are declared. Each Visual Basic subroutine or
function that wants an error handler must declare its own error handler. This
is different than the way SICL error handlers installed with ionerror work
in C programs. An error handler installed with ionerror remains active
within the scope of the whole C program.

Chapter 3 69

Example: Error
Handlers (Visual
Basic)

Programming with SICL
Handling Errors

In this Visual Basic example, the error handler displays the error message
in a dialog box and then terminates the program. When an error occurs, the
Visual Basic Err variable is set to the error code and the Error$ variable is
set to the error message string for the error that occurred.

Option Explicit
rfrYryryryyyvyrvyrvyrvyryvyrvrvrvyrvyrvyrvyryvrvyrvyrvyrvyryrrrvrvrryrryrrrrrvryrvrvrvrvrvrrrvrvrrvrrueounay
'errhand.bas

'In this example, the error handler displays the error
'message in a Message Box and then terminates the program.
rryrryrryvryrvryrvryryvrvrrrrvrvrrrrrvrrrrrrrrrrrrrrrrrrrrrrrrrrrovng
Sub Main ()

Dim dvm As Integer

Dim res As Double

' Install an error handler

On Error GoTo ErrorHandler

' "hpib7" is the SICL Interface name as defined in:

' Start | Programs | Agilent IO Libraries | IO Config
' "22" is the instrument gpib address on the bus

' Change these to the SICL Name and gpib address for
your instrument

dvm = iopen ("hpib7,22")

' Set timeout to 5 seconds

Call itimeout (dvm, 5000)

' Take a measurement

Call ivprintf (dvm, "MEAS:VOLT:DC?" + Chr$(10), 0&)

' Read the results

Call ivscanf (dvm, "%1f", res)

MsgBox "Result is " + Format (res)
iclose (dvm)

' Tell SICL to cleanup for this task
Call siclcleanup

Exit Sub
ErrorHandler:
' Display the error message
MsgBox "*** Error : " + Error, vbExclamation

' Tell SICL to cleanup for this task
Call siclcleanup
End Sub

70 Chapter 3

Programming with SICL
Using Locks

Using Locks

Because SICL allows multiple sessions on the same device or interface,
the action of opening does not mean you have exclusive use. In some cases
this is not an issue, but should be a consideration if you are concerned with
program portability.

What are Locks?

The SICL ilock function is used to lock an interface or device. The SICL
iunlock function is used to unlock an interface or device.

Locks are performed on a per-session (device, interface, or commander)
basis. Also, locks can be nested. The device or interface only becomes
unlocked when the same number of unlocks are done as the number of
locks. Doing an unlock without a lock returns the error I_ERR_NOLOCK.

What does it mean to lock? Locking an interface (from an interface session)
restricts other device and interface sessions from accessing this interface.
Locking a device restricts other device sessions from accessing this device;
however, other interface sessions may continue to access the interface for
this device. Locking a commander (from a commander session) restricts
other commander sessions from accessing this commander.

CAUTION

It is possible for an interface session to access a device locked from a
device session. In such a case, data may be lost from the device
session that was underway. For example, Agilent Visual Engineering
Environment (VEE) applications use SICL interface sessions. Therefore,
I/O operations from VEE applications can supercede any device session
that has a lock on a particular device.

Not all SICL routines are affected by locks. Some routines that set or return
session parameters never touch the interface hardware and therefore work
without locks. For information on using locks in multi-threaded SICL
applications over LAN, see Chapter 8 - Using SICL with LAN.

Chapter 3 71

Example: Device
Locking (C)

Programming with SICL
Using Locks

Lock Actions

If a session tries to perform any SICL function that obeys locks on an
interface or device currently locked by another session, the default action is
to suspend the call until the lock is released or, if a timeout is set, until the
call times out.

This action can be changed with the isetlockwait function (see Chapter
9 - SICL Language Reference for a description). If the isetlockwait
function is called with the flag parameter set to 0 (zero), the default action is
changed. Rather than causing SICL functions to suspend, an error will be
returned immediately.

To return to the default action, to suspend and wait for an unlock, call the
isetlockwait function with the flag set to any non-zero value.

Locking in a Multi-User Environment

In a multi-user/multi-process environment where devices are being shared,
it is a good idea to use locking to ensure exclusive use of a particular device
or set of devices. However, as explained in “Using Locks”, an interface
session can access a device locked from a device session.

In general, it is not good programming practice to lock a device at the
beginning of an application and unlock it at the end. This can result in
deadlocks or long waits by others who want to use the resource.

The recommended procedure to use locking is per transaction. Per
transaction means that you lock before you setup the device, then unlock
after all desired data have been acquired. When sharing a device, you
cannot assume the state of the device, so the beginning of each transaction
should have any setup needed to configure the device or devices to be
used.

/* locking.c
This example shows how device locking can be
used to gain exclusive access to a device*/

#include <sicl.h>
#include <stdio.h>

main ()

{
INST dvm;

72 Chapter 3

Programming with SICL

Using Locks
char strres[20];
unsigned long actual;
#if defined(BORLANDC) && !defined(WIN32)

_InitEasyWin(); /* required for Borland EasyWin
programs */
#endif

/* Log message and terminate on error */
ionerror (I ERROR EXIT);

/* Open the multimeter session */
dvm = iopen (“hpib7,16”);
itimeout (dvm, 10000);

/* Lock the multimeter device to prevent access
from other applications*/
ilock (dvm) ;

/* Take a measurement */
iwrite (dvm, “MEAS:VOLT:DC?\n”, 14, 1, NULL);

/* Read the results */
iread (dvm, strres, 20, NULL, &actual);

/* Release the multimeter device for use by others */

iunlock (dvm) ;

/* NULL terminate result string and print results */

/* This technique assumes the last byte sent was a
line-feed */

if (actual) {

strres[actual - 1] = (char) 0;
printf ("Result is %s\n”, strres);

/* Close the multimeter session */
iclose (dvm) ;

/* This call is a no-op for WIN32 programs.*/
_siclcleanup();

return 0;}

Chapter 3 73

Example: Device
Locking (Visual
Basic)

Programming with SICL
Using Locks

Option Explicit
rryryryyryryryryryrrrvryryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrruooy
' locking.bas
' This example shows how device locking can be
used to gain exclusive access to a device
rryrryyryryryrryrrryvyryrryrrrrrrrrrrrrrrrrrrrrrrrrrrrrunrony
Sub Main ()
Dim dvm As Integer
Dim strres As String * 20 'Fixed length String
Dim actual As Long

! Install an error handler
On Error GoTo ErrorHandler

' Open the multimeter session
dvm = iopen ("hpib7,23")
Call itimeout (dvm, 10000)

Lock the multimeter device to prevent access from
' other applications
Call ilock (dvm)

! Take a measurement
Call iwrite (dvm, "MEAS:VOLT:DC?" + Chr$(10),
14, 1, 0&)

' Read the results
Call iread(dvm, strres, 20, 0&, actual)

' Release the multimeter device for use by others
Call iunlock (dvm)

' Display the results
MsgBox "Result is " + Left$(strres, actual)

' Close the multimeter session
Call iclose (dvm)

' Tell SICL to cleanup for this task
Call siclcleanup

Exit Sub

74 Chapter 3

Programming with SICL
Using Locks

ErrorHandler:
' Display the error message.
MsgBox "*** Error : " + Error

' Tell SICL to cleanup for this task
Call siclcleanup

End Sub

Chapter 3 75

Programming with SICL
Additional Example Programs

Additional Example Programs

This section contains two additional example programs that give guidelines
to help you develop SICL applications, including Example: Oscilloscope
Program (C) and Example: Oscilloscope Program (Visual Basic).

Example: Oscillosope Program (C)

This C example programs an oscilloscope (such as an Agilent 54601),
uploads the measurement data, and instructs the oscilloscope to print its
display to a ThinkJet printer. This program uses many SICL features and
illustrates some important C and Windows programming techniques for
SICL.

Program Files The oscilloscope example files are located in the C\SAMPLES\SCOPE
subdirectory under the SICL base directory. The subdirectory contains the
source program and a number of files to help you build the example with
specific compilers, depending on the Windows environment used.

SCOPE.C Example program source file.

SCOPE.H Example program header file.

SCOPE.RC Example program resource file.

SCOPE.DEF Example program module definitions file.

SCOPE.ICO Example program icon file.

VCSCP32.MAK Windows 95, Windows 98, Windows 2000, or
Windows NT project file for Microsoft Visual C++.

BCSCP32.IDE Windows 95, Windows 98, Windows Me, Windows
2000, or Windows NT project file for Borland C
Integrated Development Environment.

Building the Project This section shows how to create the project file for this example using

File Microsoft Visual C. You can also load the makefile directly from the
C\SAMPLES\SCOPE subdirectory, if you desire. If you are using another
language tool, choose the appropriate project file or makefile from the
C\SAMPLES\SCOPE subdirectory.

76 Chapter 3

Program Overview

Programming with SICL
Additional Example Programs

To compile and link the example program with Microsoft Visual C:

1 SelectFile | New from the menu and select Project from the
list box that appears. Then click OK.

2 The New Project dialog box is now displayed. Type the name you
want for the project in the edit box labeled Project Name. Then,
select Application from the Project Type list box. Select the
directory location for the project in the Directory list box and click
the Create button.

3 The Project Files dialog box is now displayed. Double-click the
source files scope.c, scope.rc, and scope.def to add them to the
project. Also add sic/32.lib from the SICL C directory. Then, click
the Close button.

4 Select Project | Settings from the menu and click the
C\C++ button. Select Code Generation from the Category
list box. Then, select Multithreaded Using DLL from the
Use Run-Time Library list box and click OK.

5 Select Tools | Options from the menu and click the
Directories button in the Options dialog box. Select
Include Files from the Show Directories for: list box
and click the Add button. Then, type \SICL\C and click OK.

6 Select Project | Build to build the application.

If there are no errors reported, you can execute the program by selecting
Project | Execute. An application window will open. Several commands
are available from the Actions menu, and any results or output will be printed
in the program window. To end the program, select File | Exit from the
program menu.

You may want to view the program with an editor as you read through this
section. The entire program is not listed here because of its length. This
program illustrates specific SICL features and programming techniques and
is not meant to be a robust Windows application. See Chapter 9 - SICL
Language Reference or the SICL online Help for detailed information on the
SICL features used in this program.

Chapter 3 77

Programming with SICL
Additional Example Programs

Custom Error Handler

The oscilloscope program defines a custom error handler that is called
whenever an error occurs during a SICL call. The handler is installed using
ionerror before any other SICL function call is made, and will be used for
all SICL sessions created in the program.

void SICLCALLBACK my err handler (INST id, int error)
{

sprintf (text buf[num lines++],
“session id=%d, error = %d:%s”, id, error,
igeterrstr(error));
sprintf (text buf[num lines++], “Select ‘File | Exit’
to exit program!”);

// 1If error is from scope, disable I/0 actions by
graying out menu picks.
if (id == scope) {
code to disallow further I/0 requests from user

}

The error number is passed to the handler, and igeterrstr is used to
translate the error number into a more useful description string. If desired,
different actions can be taken depending on the particular error or id that
caused the error.

Locks

SICL allows multiple applications to share the same interfaces and devices.
Different applications may access different devices on the same interface, or
may alternately access the same device (a shared resource). If your
program will be executing along with other SICL applications, you may want
to prevent another application from accessing a particular interface or device
during critical sections of your code. SICL provides the ilock/iunlock
functions for this purpose.

void get data (INST id)
{
non-SICL code

/* lock device to prevent access from other applications */
ilock (scope) ;

78 Chapter 3

Programming with SICL
Additional Example Programs

SICL I/0 code to program scope and get data

/* release the scope for use by other applications */
iunlock (scope) ;

non-SICL code
}

Lock the interface or device with ilock before critical sections of code,
and release the resource with iunlock at the end of the critical section.
Using ilock on a device session prevents any other device session from
accessing the particular device. Using ilock on an interface session
prevents any other session from accessing the interface and any device
connected to the interface.

See isetlockwait in Chapter 9 - SICL Language Reference to determine
actions that can be taken when a SICL call in your code attempts to access
a resource that is locked by another session.

Formatted 1/O

SICL provides extensive formatted 1/O functionality to help facilitate
communication of I/O commands and data. The example program uses a
few of the capabilities of the iprintf/iscanf/ipromptf functions and
their derivatives.

The iprintf function is used to send commands. As with all of the
formatted I/O functions, the data is actually buffered. In this call, the \n
at the end of the format:

iprintf (id,” :waveform:preamble?\n”) ;

causes the buffer to be flushed and the string to be output. If desired, several
commands can be formatted before being sent and then all commands
outputted at once. The formatted 1/O buffers are automatically flushed
whenever the buffer fills (see isetbuf) or when an iflush call is made.

When reading data back from a device, the iscanf function is used. To
read the preamble information from the oscilloscope, use the format string
“%,20£\n”":

iscanf (id,” %,20f\n” ,pre);

This string expects to input 20 comma-separated floating point numbers
into the pre array.

To upload the oscilloscope waveform data, use the string “s#wb\n”.
The wb indicates that iscanf should read word-wide binary data.

Chapter 3 79

Programming with SICL
Additional Example Programs

The # preceding the data modifer tells iscanf to get the maximum number
of binary words to read from the next parameter (&elements):

iscanf (id,” $#wb\n”, &elements, readings) ;

The read will continue until an EOI indicator is received or the maximum
number of words have been read.

Interface Sessions

Sometimes it may be necessary to control the GPIB bus directly instead of
using SICL commands. This is accomplished using an interface session and
interface-specific commands. This example uses igetintfsess to geta
session for the interface to which the oscilloscope is connected. (If you know
which interface is being used, it is also possible to just use an iopen call on
that interface.)

Then, igpibsendcmd is used to send some specific command bytes on
the bus to tell the printer to listen and the oscilloscope to send its data. The
igpibatnctl function directly controls the state of the ATN signal on the
bus.

void print disp (INST id)
{
INST hpibintf ;

hpibintf = igetintfsess (id);

/* tell oscilloscope to talk and printer to listen
the listen command is formed by adding 32 to the
device address of the device to be a listener.
The talk command is formed by adding 64 to the
device address ofthe device to be a talker. */

cmd[0] = (unsigned char) 63 ; /* 63 is unlisten */
cmd[1l] = (unsigned char) (32+1) ; /* printer at addr 1,
make it a listener */

cmd[2] = (unsigned char) (64+7) ; /* scope at addr 7,
make it a talker */
cmd[3] = “\0'; /* terminate the string */

length = strlen (cmd) ;

igpibsendcmd (hpibintf, cmd, length) ;
igpibatnctl (hpibintf, 0) ;

80 Chapter 3

Programming with SICL
Additional Example Programs

}
SRQs and iwaithdlr

Many instruments are capable of using the service request (SRQ) signal

on the GPIB bus to signal the controller that an event has occurred. If an
application needs to respond to SRQs, an SRQ handler must be installed
with the ionsrq call. All SRQ handlers are called whenever an SRQ occurs.

In the example handler, the oscilloscope status is read to verify that the
oscilloscope asserted SRQ, and then the SRQ is cleared and a status
message is displayed. If the oscilloscope did not assert SRQ, the handler
prints an error message.

void SICLCALLBACK my srqg handler (INST id)
{

unsigned char status;

/* make sure it was the scope requesting service */
ireadstb (id, &status) ;

if (status &= 64) {
/* clear the status byte so the scope can assert
SRQ again if needed. */
iprintf (id,” *CLS\n”) ;

sprintf (text buf[num lines++],
“id = %d, SRQ received!, stat=0x%x"”, id,status);
} else {
sprintf (text buf[num lines++],
“SRQ received, but not from the scope”);

}
InvalidateRect (hWnd, NULL, TRUE);
}

In the routine that commands the oscilloscope to print its display, the
oscilloscope is set to assert SRQ when printing is finished. While the
oscilloscope is printing, the example program has the application suspend
execution. SICL provides the function iwaithndlr that will suspend
execution and wait until either an event occurs that would call a handler,
or a specified timeout value is reached.

In the example, interrupt events are turned off with iintrof£ so that all
interrupts are disabled while interrupts are being set up. Then, the SRQ
handler is installed with ionsrq. Code to program the oscilloscope to print

Chapter 3 81

Programming with SICL
Additional Example Programs

and send an SRQ is next, then the call to iwaithdlr, with a timeout value
of 30 seconds. When the oscilloscope finishes printing and sends the SRQ,
the SRQ handler will be executed and then iwaithdlr will return. A call to
iintron re-enables interrupt events.

void print disp (INST id)

{

iintroff ();
ionsrqg(id,my srg_handler);/* Not supported on 82335 */

/* tell the scope to SRQ on ‘operation complete’ */
iprintf (id,” *CLS\n”) ;
iprintf (id,” *SRE 32 ; *ESE 1\n”) ;

/* tell the scope to print */
iprintf (id,” :print ; *OPC\n”) ;

code to tell the scope to print
/* wait for SRQ before continuing program */

iwaithdlr (30000L) ;
iintron () ;

sprintf (text buf[num lines++],”Printing complete!”)

82

Chapter 3

Program Files

Loading and
Running the
Program

Example:

Programming with SICL
Additional Example Programs

Oscillosope Program (Visual Basic)

This Visual Basic example program uses SICL to get and plot waveform
data from an Agilent 54601A (or compatible) oscilloscope. This routine is
called each time the cmdGetWaveform command button is clicked.

The oscilloscope example files are located in the VB\SAMPLES\SCOPE
subdirectory under the SICL base directory. The files are:

SCOPE.FRM

Visual Basic source for the SCOPE example program.

SCOPE.MAK

Visual Basic project file for the SCOPE example program.

Follow these steps to load and run the SCOPE sample program:

1 Connect an Agilent 54601A oscilloscope to your interface.

2 Run Visual Basic 6.0.

3 Open the project file scope.vbp by selecting File | Open
Project from the Visual Basic menu.

4 The SICL Visual Basic declaration file sic/4.bas module must be
added to your VB project. To add this module to your project, from
the menu select Project | Add Module, select the Existing

tab,

browse to the vb\ directory under the 10 Libraries install

directory, select sicl4.bas, and click Open.

5 Edit the scope.frm file to set the scope_address constant to
the address of your oscilloscope. To do this:

a

If a Project Tree is not already visible, select View |
Project Explorer from the Visual Basic menu.

Under Forms, right-click scope . £rm and select View Code.

Edit the following line so the address is set to the address of
the oscilloscope:

Private Const scope_address = "hpib7,7" ' Address of SCOPE

Chapter 3

83

Program Overview

Programming with SICL
Additional Example Programs

6 Run the program by pressing the F5 key or the RUN button on the
Visual Basic Toolbar.

7 Press the Waveform button to get and display the waveform.
8 Press the Integral button to calculate and display the integral.

9 After performing these steps, you can create a standalone
executable (. EXE) version of this program by selecting File |
Make scope.exe. . .from the Visual Basic menu.

You may want to view the program with an editor as you read through this
section. The entire program is not listed here because of its length. This
program illustrates specific SICL features and programming techniques and
is not meant to be a robust Windows application. See Chapter 9 - SICL
Language Reference or the SICL online Help for detailed information on the
SICL features used in this program.

Listing

Description

CmdGetWaveform | Subroutine that is called when the cmdGetWaveform command button is

Click

pressed. The command button is labeled Waveform.

On Error

This Visual Basic statement enables an error handling routine within a
procedure. In this example, an error handler is installed starting at label
ErrorHandler within the emdOutputCmd Click subroutine.

The error handling routine is called any time an error occurs during the
processing of the cmdGetWaveform Click procedure. SICL errors
are handled in the same way that Visual Basic errors are handled with
the on Error statement.

CmdGetWaveform. | The button that causes the cmdGetWaveform Click routine to be

Enabled called is disabled when code is executing inside
cmdOutputCmd Click. This is good programming style.
iopen An iopen call is made to open a device session for the oscilloscope.

The device address for the oscilloscope is in the scope_address
string.In this example, the default address is "hpib7,7". The interface
name "hpib7" is the name given to the interface with the 10 Config utility.
The bus (primary) address of the oscilloscope follows, in this case 7.
You may want to change the scope_address string to specify the
correct address for your configuration.

84 Chapter 3

Programming with SICL
Additional Example Programs

Listing

Description

igetintfsess

igetintfsess is called to return an interface session id for the
interface to which the oscilloscope instrument is connected. This
interface session will be used by the following iclear call to send
an interface clear to reset theinterface.

iclear

The iclear function is called to reset the interface.

itimeout

itimeout is called to set the timeout value for the oscilloscope's
device session to 3 seconds.

ivprintf

The ivprintf function is called four times to set up the oscilloscope
and then request the oscilloscope's preamble information. In each case
Chr$(10) is appended to the format string passed as the second
argumentto ivprintf£. This tells ivprintf to flush the formatted
I/O write buffer after writing the string specified in the format string.

ivscanf

The ivscanf function is called to read the oscilloscope's preamble
information into the preamble array. The preamble array is passed as
the third parameter to ivscan£. This passes the address of the first
element of the preamble array to the ivprintf£ SICL function.

ivprintf

ivprintf is called to prompt the oscilloscope for its waveform data.
Again, Chr$(10) is appended to the format string passed as the second
argument to ivprint£. This tells ivprintf to flush the formatted 1/O
write buffer after writing the string specified in the format string.

iread

ireadis called to read in the oscilloscope's waveform. The waveform is
read in as a specified number of bytes. The format string passed as the
third parameter to iread specifies that a maximum of 2010 Byte values
be read into the Byte array. A null value, vbNull, is passed as the fourth
value and a Long variable, actual, returns the number of bytes actually
read. 0& may also be used for a null value.

iclose

The iclose subroutine closes the scope_id device session for the
oscilloscope as well as the int£_id interface session obtained with
igetintfsess.

cmdGetWaveform.

Enabled

The button that causes the cmdGetWaveform Click routine to be
called is re-enabled when execution inside cmdGetWaveform Click
is finished. This allows the program to get another waveform.

Exit Sub

This Visual Basic statement causes the cmdGetWaveform Click
subroutine to be exited after normal processing has completed.

Chapter 3 85

Programming with SICL
Additional Example Programs

Listing Description

errorhandler: This label specifies the beginning of the error handler that was installed
for this subroutine. This handler is called whenever a run-time error
occurs.

Error$ This Visual Basic function is called to get the error message for the
error. The error returned is the most recent run-time error when no
argument is passed to the function.

iclose The iclose subroutine is called inside the error handler to close the
scope_id device session for the oscilloscope as well as the int£f_id
interface session obtained with igetintfsess.

CmdGetWaveform. | This re-enables the button that causes the cmdGetWaveform Click

Enabled routine to be called. This allows the program to get another waveform.

Exit Sub This Visual Basic statement causes the cmdGetWaveform Click

subroutine to be exited after processing an error in the subroutine's error
handler.

86

Chapter 3

Using SICL with GPIB

87

Using SICL with GPIB

This chapter shows how to open a communications session and
communicate with GPIB devices, interfaces, or controllers. The example
programs in this chapter are also provided in C\SAMPLES\MISC (for C/C++)
or VB\SAMPLES\MISC (for Visual Basic) of the IO Libraries base directory.
This chapter includes:

Introduction to GPIB Interfaces
Using GPIB Device Sessions
Using GPIB Interface Sessions
Using GPIB Commander Sessions
Writing GPIB Interrupt Handlers

88 Chapter 4

Typical GPIB
Interface

Using SICL with GPIB
Introduction to GPIB Interfaces

Introduction to GPIB Interfaces

This section provides an introduction to using SICL with the GPIB interface,
including:

B GPIB Interfaces Overview
W Selecting a GPIB Communications Session
B SICL GPIB Functions

GPIB Interfaces Overview

This section provides an overview of GPIB interfaces, including typical
hardware configuration, using 10 Config, and example configurations using
SICL.

As shown in the following figure, a typical GPIB interface consists of a
Windows PC with one or more GPIB cards (PCIl and/or ISA) cards installed
in the PC and one or more GPIB instruments connected to the GPIB cards
via GPIB cable. /O communication between the PC and the instruments is
via the GPIB cards and the GPIB cable. This figure shows GPIB instruments
at addresses 3 and 5.

4)

GPIB Interface (82350 PCI GPIB Cards)

Windows PC GPIB Cable GPIB Instruments
5
82350 GPIB Card #1 3
82350 GPIB Card #2 3

- /

Chapter 4 89

Configuring GPIB
Interfaces

Example: GPIB
(82350) Interface

Using SICL with GPIB
Introduction to GPIB Interfaces

An 10 interface can be defined as both a hardware interface and as a
software interface. The purpose of the IO Config utility is to associate a
unique interface name with a hardware interface.

The IO Libraries use an Interface Name or Logical Unit Number to identify an
interface. This information is passed in the parameter string of the iopen
function call in a SICL program. 10 Config assigns an Interface Name and
Logical Unit Number to the interface hardware, as well as other necessary
configuration values for an interface when the interface is configured. See
the Agilent 10 Libraries Installation and Configuration Guide for Windows
for information on 10 Config.

The GPIB interface system in the following figure consists of a Windows PC
with two 82350 GPIB cards connected to three GPIB instruments via GPIB
cables. For this system, the IO Config utility has been used to assign GPIB
card #1 a SICL name of “hpib7” and to assign GPIB card #2 a SICL name of
“hpib8”. With these names assigned to the interfaces, the SICL addressing
is as shown in the figure. Since unique names have been assigned by IO
Config, you can use the iopen command to open the I/O paths shown.

-

Interface SICL Names Windows PC GPIB Cable GPIB Instruments

SICL Name

"hpib7" 82350 GPIB Card #1 3
"hpib8" 82350 GPIB Card #2 3

~

GPIB Interface (82350 PCI GPIB Cards)

SICL Addressing

iopen ("hpib7, 5") Open 10 path to GPIB instrument at address 5 using 82350 Card #1
iopen ("hpib7,3") Open 10 path to GPIB instrument at address 3 using 82350 Card #1
\iopen ("hpib8,3") Open IO path to GPIB instrument at address 3 using 82350 Card #2 /

90 Chapter 4

Using SICL with GPIB
Introduction to GPIB Interfaces

Selecting a GPIB Communications Session

When you have determined the GPIB system is set up and operating
correctly, you can start programming with the SICL functions. First, you
must determine what type of communications session to use.

The three types of communications sessions are device, interface, and
commander. To use a device session, see “Using GPIB Device Sessions”.
To use an interface session, see “Using GPIB Interface Sessions”. To use
a commander session, see “Using GPIB Commander Sessions”.

SICL GPIB Functions

Function Name Action
igpibatnctl Sets or clears the ATN line
igpibbusaddr Changes bus address
igpibbusstatus Returns requested bus data
igpibgettldelay Returns the current T1 setting for the interface
igpibllo Sets bus in Local Lockout Mode
igpibpassctl Passes active control to specified address
igpibppoll Performs a parallel poll on the bus
igpibppollconfig Configures device for PPOLL response
igpibppollresp Sets PPOLL state
igpibrenctl Sets or clears the REN line
igpibsendcmd Sends data with ATN line set
igpibsettldelay Sets the T1 delay value for this interface

Chapter 4

91

Using SICL with GPIB
Using GPIB Device Sessions

Using GPIB Device Sessions

A device session allows you direct access to a device without knowing the
type of interface to which it is connected. The specifics of the interface are
hidden from the user.

SICL Functions for GPIB Device Sessions

This section shows how some SICL functions are implemented for GPIB
device sessions. The data transfer functions work only when the GPIB
interface is the Active Controller. Passing control to another GPIB device
causes this device to lose active control.

Function Description

iwrite Causes all devices to untalk and unlisten. It sends this
controller’s talk address followed by unlisten and then the listen
address of the corresponding device session. Then, it sends the
data over the bus.

iread Causes all devices to untalk and unlisten. It sends an unlisten,
then sends this controller’s listen address followed by the talk
address of the corresponding device session. Then, it reads the
data from the bus.

ireadstb Performs a GPIB serial poll (SPOLL).

itrigger Performs an addressed GPIB group execute trigger (GET).

iclear Performs a GPIB selected device clear (SDC) on the device
corresponding to this session.

Addressing GPIB Devices

To create a device session, specify the interface logical unit or symbolic
name and a particular device logical address in the addr parameter of the
iopen function. The interface logical unit and symbolic name are set by
running the 10 Config utility.

92 Chapter 4

Opening 10 Config

Primary and
Secondary
Addresses

VXI Mainframe
Connections

GPIB Device
Sessions and
Service Requests

Using SICL with GPIB
Using GPIB Device Sessions

To open 10 Config, open the Agilent IO Libraries Control (on the taskbar)
and click Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on the 10 Config utility.

SICL supports both primary and secondary addressing on GPIB interfaces.
The primary address must be between 0 and 30 and the secondary address
must be between 0 and 30. The primary and secondary addresses
correspond to the GPIB primary and secondary addresses. Some example
GPIB addresses for device sessions are:

GPIB,7 A device address corresponding to the device at
primary address 7

hpib, 3,2 A device address corresponding to the device at
primary address 3, secondary address 2

For connections to a VXI mainframe via an E1406 Command Module (or
equivalent), the primary address passed to iopen corresponds to the
address of the Command Module and the secondary address must be
specified to select a specific instrument in the card cage.

Secondary addresses of 0, 1, 2, ... 30 correspond to VXI instruments at
logical addresses of 0, 8, 16, ... 240, respectively. See “GPIB Device
Session Examples” for an example program to communicate with a VXI
mainframe via the GPIB interface.

Examples to open a device session with an GPIB device at bus address 16
follow.

C example:

INST dmm;
dmm = iopen (“hpib,16”);

Visual Basic example:

Dim dmm As Integer
dmm = iopen (“hpib,16”)

There are no device-specific interrupts for the GPIB interface, but GPIB
device sessions do support Service Requests (SRQs). On the GPIB
interface, when one device issues an SRQ, the library informs all GPIB
device sessions that have SRQ handlers installed (see ionsrq in
Chapter 9 - SICL Language Reference).

Chapter 4 93

Example: GPIB
Device Session (C)

Using SICL with GPIB
Using GPIB Device Sessions

This is an artifact of how GPIB handles the SRQ line. The interface cannot
distinguish which device requested service. Therefore, the library acts as if
all devices require service. The SRQ handler can retrieve the device’s
status byte by using the ireadstb function. For more information, see
“Writing GPIB Interrupt Handlers” in this chapter.

GPIB Device Session Examples

This section provides C language and Visual Basic language example
programs for GPIB device sessions.

This example opens two GPIB communications sessions with VXI devices
(via a VXI Command Module). Then, a scan list is sent to a switch and
measurements are taken by the multimeter every time a switch is closed.

/* hpibdev.c
This example program sends a scan list to a switch
and, while looping, closes channels and takes
measurements. */

#include <sicl.h>
#include <stdio.h>

main ()

{
INST dvm;
INST sw;

double res;
int 1i;

#if defined(BORLANDC) && !defined(WIN32)

_InitEasyWin(); /* Required for Borland EasyWin
programs */

#endif

/* Log message and terminate on error */
ionerror (I _ERROR_EXIT);

/* Open the multimeter and switch sessions*/
dvm = iopen (“hpib7,9,3");

sw = iopen (“hpib7,9,147);

itimeout (dwvm, 10000);

94 Chapter 4

Example: GPIB
Device Session
(Visual Basic)

Using SICL with GPIB
Using GPIB Device Sessions

itimeout (sw, 10000);

/*Set up trigger*/
iprintf (sw, “TRIG:SOUR BUS\n”);

/*Set up scan list*/
iprintf (sw,” SCAN (@100:103)\n”);
iprintf (sw,”INIT\n”);

for (i=1;i<=4;i++)
{
/* Take a measurement */
iprintf (dvm,”MEAS:VOLT:DC?\n”) ;

/* Read the results */
iscanf (dvm,”%1f”,&res);

/* Print the results */
printf (“Result is %1f\n”,res);

/* Trigger to close channel */
iprintf (sw, “TRIG\n”);
}
/* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

/* This call is a no-op for WIN32 programs*/
_siclcleanup();

return 0;

}

This example opens two GPIB communications sessions with VXI devices
(via a VXI Command Module). Then, a scan list is sent to a switch and
measurements are taken by the multimeter every time a switch is closed.

Option Explicit
Trryrryryyryryyryryryrryrvyvryrrrryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrruooua

gpibdv.bas
This example program sends a scan list to a switch and
while looping closes channels and takes measurements.

rryrryyryryyryryryrrryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrvrrvrvrvurouny

Chapter 4 95

Using SICL with GPIB
Using GPIB Device Sessions

Sub Main ()
Dim dvm As Integer
Dim sw As Integer
Dim res As Double
Dim i As Integer
Dim argcount As Integer

' Open the multimeter and switch sessions

' "hpib7" is the SICL Interface name as defined in:
' Start | Programs | Agilent IO Libraries | IO Config

' Change this to the SICL Name you have defined
dvm = iopen ("hpib7,9,3™)
sw = iopen ("hpib7,9,14")

' set timeouts
Call itimeout (dvm, 10000)
Call itimeout (sw, 10000)

' Set up trigger

argcount = ivprintf (sw, "TRIG:SOUR BUS" + Chr$(10))

' Set up scan list

argcount = ivprintf (sw, "SCAN (@100:103)" + Chr$(10))

argcount = ivprintf (sw, "INIT" + Chr$(10))

'Display Forml and print voltage measurements

' default form, (Name) "Forml", containing no controls)

Forml.Show

For i = 1 To 4
' Take a measurement

argcount = ivprintf (dvm, "MEAS:VOLT:DC?" + Chr$(10))

' Read the results
argcount = ivscanf (dvm, "$1f", res)

' Print the results
Forml.Print "Result is " + Format (res)

' Trigger switch
argcount = ivprintf (sw, "TRIG" + Chr$(10))
Next i

96 Chapter 4

Using SICL with GPIB
Using GPIB Device Sessions

' Close the sessions
Call iclose (dvm)

Call iclose (sw)
' Tell SICL to cleanup for this task

Call siclcleanup
End Sub

Chapter 4

97

Using SICL with GPIB
Using GPIB Interface Sessions

Using GPIB Interface Sessions

Interface sessions allow direct, low-level control of the specified interface, but
the programmer must provide all bus maintenance settings for the interface
and must know the technical details about the interface. Also, when using
interface sessions, interface-specific functions must be used. Thus, the
program cannot be used on other interfaces and becomes less portable.

SICL Functions for GPIB Interface Sessions

This section describes how some SICL functions are implemented for GPIB
interface sessions.

Function

Description

iwrite

Sends the specified bytes directly to the interface without
performing any bus addressing. The iwrite function always
clears the ATN line before sending any bytes, thus ensuring
that the GPIB interface sends the bytes as data, not as
command bytes.

iread

Reads the data directly from the interface without performing
any bus addressing.

itrigger

Performs a broadcast GPIB group execute trigger (GET)
without additional addressing. Use this function with
igpibsendcmd to send a UNL followed by the appropriate
device addresses. This will allow the itrigger function to be
used to trigger multiple GPIB devices simultaneously.

Passing the I_TRIG_STD value to the ixtrig function also
causes a broadcast GPIB group execute trigger (GET). There
are no other valid values for the ixtrig function.

iclear

Performs a GPIB interface clear (pulses IFC), which resets the
interface.

98

Chapter 4

Opening 10 Config

GPIB Interface
Sessions Interrupts

GPIB Interface
Sessions and
Service Requests

Using SICL with GPIB
Using GPIB Interface Sessions

Addressing GPIB Interfaces

To create an interface session on your GPIB system, specify the particular
interface logical unit or symbolic name in the addr parameter of the iopen
function. The interface logical unit and symbolic name are set by running
the 10 Config utility.

To open 10 Config, open the Agilent 10 Libraries Control (on the taskbar)
and click Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on the IO Config utility.

Example interface addresses follow.

GPIB An interface symbolic name.
hpib An interface symbolic name.
gpib2 An interface symbolic name.
IEEE488 An interface symbolic name.
7 An interface logical unit.

These examples open an interface session with the GPIB interface.
C example:

INST hpib;
hpib = iopen (“hpib”);

Visual Basic example:

Dim hpib As Integer
hpib = iopen (“hpib”)

There are specific interface session interrupts that can be used. See
isetintr in Chapter 9 - SICL Language Reference for information on
the interface session interrupts for GPIB. Also, see “Writing GPIB Interrupt
Handlers” in this chapter for more information.

GPIB interface sessions support Service Requests (SRQs). On the GPIB
interface, when one device issues an SRQ, the library will inform all GPIB
interface sessions that have SRQ handlers installed (see ionsrqin
Chapter 9 - SICL Language Reference). For more information, see
“Writing GPIB Interrupt Handlers” in this chapter.

Chapter 4 99

Using SICL with GPIB
Using GPIB Interface Sessions

GPIB Interface Session Examples

This section provides C language and Visual Basic language example
programs for GPIB interface sessions.

Example: GPIB /* hpibstat.c
Interface Session This example retrieves and displays GPIB
(C) bus status information. */

#include <stdio.h>
#include <sicl.h>

main ()

{
INST id; /* session id */
int rem; /* remote enable */
int srq; /* service request */
int ndac; /* not data accepted */

int sysctlr; /* system controller */
int actctlr; /* active controller */

int talker; /* talker */

int listener; /* listener */

int addr; /* bus address */

#if defined(BORLANDC) && !defined(WIN32)
_InitEasyWin(); /* Required for Borland EasyWin programs */

#endif

/* exit process if SICL error detected */
ionerror (I_ERROR EXIT);

/* open GPIB interface session */
id = iopen (“hpib”);
itimeout (id, 10000);

/* retrieve GPIB bus status */

igpibbusstatus (id, I _GPIB BUS REM, &rem) ;
igpibbusstatus (id, I _GPIB BUS SRQ, &srq) ;
igpibbusstatus (id, I_GPIB BUS NDAC, &ndac) ;
igpibbusstatus (id, I GPIB BUS SYSCTLR, &sysctlr);
igpibbusstatus (id, I GPIB BUS ACTCTLR, &actctlr);
igpibbusstatus (id, I _GPIB BUS TALKER, &talker);
igpibbusstatus (id, I _GPIB BUS LISTENER, &listener);
(id

igpibbusstatus I GPIB BUS ADDR, &addr) ;

100 Chapter 4

Example: GPIB
Interface Session
(Visual Basic)

Using SICL with GPIB
Using GPIB Interface Sessions

/* display bus status */

printf ("$-55%-55%-55%-55%-5s%-5s%-5s%-5s\n”,

“REM”, “SRQ”,“NDC”, “SYS”, “ACT”, “TLK’, “LIN”,
“ADDR”) ;printf ("%$2d%5d%5d%5d%5d%5d%5d%6d\n”,

rem, srq, ndac, sysctlr, actctlr, talker, listener,
addr) ;

/* This call is no-op for WIN32 programs.*/
_siclcleanup();

return 0;

‘hpibstat.bas
‘" The following example retrieves and displays
‘" GPIB bus status information.
Sub main ()
Dim id As Integer ' session id
Dim remen As Integer ' remote enable
Dim srg As Integer ‘' service request
Dim ndac As Integer ‘' not data accepted
Dim sysctlr As Integer' system controller
Dim actctlr As Integer' active controller
Dim talker As Integer ' talker
Dim listener As Integer' listener
Dim addr As Integer ‘' bus address
Dim header As String ' report header
Dim values As String ' report output

' Open GPIB interface session
id = iopen (“hpib7”)
Call itimeout (id, 10000)

' Retrieve GPIB bus status
Call igpibbusstatus(id, I GPIB BUS REM, remen)
Call igpibbusstatus(id, I GPIB BUS SRQ, srq)
Call igpibbusstatus(id, I_GPIB BUS NDAC, ndac)
Call igpibbusstatus(id, I _GPIB BUS SYSCTLR, sysctlr)
Call igpibbusstatus(id, I _GPIB BUS ACTCTLR, actctlr)
Call igpibbusstatus(id, I GPIB BUS TALKER, talker)
Call igpibbusstatus(id, I GPIB BUS LISTENER, listener)
Call igpibbusstatus(id, I GPIB BUS ADDR, addr)

Chapter 4 101

Using SICL with GPIB
Using GPIB Interface Sessions

‘" Display forml and print results
forml.Show
forml.Print “REM”; Tab(7); “SRQ”; Tab(14); “NDC”;
Tab (21);“SYS”; Tab(28); “ACT”; Tab(35); “TLK”;
Tab (42); “LTN”; Tab(49);“ADDR” forml.Print remen;
Tab (7); srqg; Tab(l14); ndac; Tab(21l);sysctlr;
Tab (28); actctlr; Tab(35); talker; Tab(42);
listener; Tab(49); addr

‘' Tell SICL to clean up for this task
Call siclcleanup

End Sub

102 Chapter 4

Using SICL with GPIB
Using GPIB Commander Sessions

Using GPIB Commander Sessions

Commander sessions are intended for use on GPIB interfaces that are not the
active controller. In this mode, a computer that is not the controller is acting
like a device on the GPIB bus. In a commander session, the data transfer
routines only work when the GPIB interface is not the active controller.

SICL Functions for GPIB Commander Sessions

This section describes how some SICL functions are implemented for GPIB
commander sessions.

Function Description

iwrite If the interface has been addressed to talk, the data is written
directly to the interface. If the interface has not been addressed
to talk, it will wait to be addressed to talk before writing the data.

iread If the interface has been addressed to listen, the data is read
directly from the interface. If the interface has not been
addressed to listen, it will wait to be addressed to listen before
reading the data.

isetstb Sets the status value that will be returned on a ireadstb call
(that is, when this device is SPOLLed). Bit 6 of the status byte
has a special meaning. If bit 6 is set, the SRQ line will be set. If
bit 6 is clear, the SRQ line will be cleared.

Addressing GPIB Commanders

To create a commander session on your GPIB interface, specify the
particular interface logical unit or symbolic name in the addr parameter
followed by a comma and the string cmdr in the iopen function.

The interface logical unit and symbolic name are set by running the 10
Config utility. To open 10 Config, open the Agilent IO Libraries Control
(on the taskbar) and click Run I0 Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for information on the

IO Config utility. Example GPIB addresses for commander sessions follow.

Chapter 4 103

Using SICL with GPIB
Using GPIB Commander Sessions

GPIB,cmdr A commander session with the GPIB interface.
hpib2,cmdr A commander session with the hpib2 interface.
7,cmdr A commander session with the interface at logical unit 7.

These examples open a commander session with the GPIB interface.
C example:

INST hpib;

hpib = iopen (“hpib,cmdr”) ;
Visual Basic example:

Dim hpib As Integer
hpib = iopen (“hpib,cmdr”)

GPIB Commander There are specific commander session interrupts that can be used. See

Sessions Interrupts isetintr in Chapter 9 - SICL Language Reference for information on
commander session interrupts. Also see “Writing GPIB Interrupt Handlers”
for more information.

104 Chapter 4

Using SICL with GPIB
Writing GPIB Interrupt Handlers

Writing GPIB Interrupt Handlers

This section provides some additional information for writing interrupt
handlers for GPIB applications in SICL.

Multiple I_INTR_GPIB_TLAC Interrupts

This interrupt occurs whenever a device has been addressed to talk or
untalk, or a device has been addressed to listen or unlisten. Due to
hardware limitations, your SICL interrupt handler may be called twice in
response to any of these events.

Your GPIB application should be written to handle this situation gracefully.
This can be done by keeping track of the current talk/listen state of the
interface card and ignoring the interrupt if the state does not change. For
more information, see the secval parameter definition of the isetintr
function in Chapter 9 - SICL Language Reference.

Handling SRQs from Multiple GPIB Instruments

GPIB is a multiple-device bus and SICL allows multiple device sessions
open at the same time. On the GPIB interface, when one device issues a
Service Request (SRQ), the library will inform all GPIB device sessions that
have SRQ handlers installed (see ionsrqin Chapter 9 - SICL Language
Reference).

This is an artifact of how GPIB handles the SRQ line. The underlying GPIB
hardware does not support session-specific interrupts like VXI does.
Therefore, your application must reflect the nature of the GPIB hardware

if you expect to reliably service SRQs from multiple devices on the same
GPIB interface.

It is vital that you never exit an SRQ handler without first clearing the SRQ
line. If the multiple devices are all controlled by the same process, the
easiest technique is to service all devices from one handler. The pseudo-
code for this follows. This algorithm loops through all the device sessions
and does not exit until the SRQ line is released (not asserted).

Chapter 4 105

Using SICL with GPIB
Writing GPIB Interrupt Handlers

while (srg_asserted) {
serial poll (devicel)
if (needs_service) service devicel
serial poll (device2)
if (needs_service) service deviceZ2

check SRQ line

Example: Servicing This example shows a SICL program segment that implements this

Requests (C)

algorithm. Checking the state of the SRQ line requires an interface session.
Only one device session needs to execute ionsrq because that handler is
invoked regardless of which instrument asserted the SRQ line. Assuming
IEEE-488 compliance, an ireadstb is all that is needed to clear the
device’s SRQ.

Since the program cannot leave the handler until all devices have released
SRQ, it is recommended that the handler do as little as possible for each
device. The previous example assumed that only one iscanf was needed
to service the SRQ. If lengthy operations are needed, a better technique is
to perform the ireadstb and set a flag in the handler. Then, the main
program can test the flags for each device and perform the more lengthy
service.

Even if the different device sessions are in different processes, it is still
important to stay in the SRQ handler until the SRQ line is released.
However, it is not likely that a process which only knows about Device A
can do anything to make Device B release the SRQ line.

In such a configuration, a single unserviced instrument can effectively
disable SRQs for all processes attempting to use that interface. Again,
this is a hardware characteristic of GPIB. The only way to ensure true
independence of multiple GPIB processes is to use multiple GPIB
interfaces.

/* Must be global */
INST idl, id2, bus;

void handler (dummy)

INST dummy;

{
int srqg asserted = 1;
unsigned char statusbyte;

106 Chapter 4

Using SICL with GPIB
Writing GPIB Interrupt Handlers

/* Service all sessions in turn until no one is
requesting service */
while (srg_asserted) {
ireadstb(idl, &statusbyte);
if (statusbyte & SRQ BIT)
{
/* Actual service actions depend upon application */
iscanf (idl, “%f”, &datal);
}
ireadstb (id2, &statusbyte);
if (statusbyte & SRQ BIT) {
iscanf (id2, “%f”, &data?);
}
igpibbusstatus (bus, I GPIB BUS SRQ, &srg asserted);
}
}

main () {

/* Device sessions for instruments */
idl = iopen (“hpib, 177);
id2 = iopen (“hpib, 187);

/* Interface session for SRQ test */
bus = iopen (“hpib”);

/* Only one handler needs to be installed */
ionsrg(idl, handler);

Chapter 4 107

Using SICL with GPIB
Writing GPIB Interrupt Handlers

Notes:

108 Chapter 4

Using SICL with GPIO

109

Using SICL with GPIO

This chapter shows how to open an interface communications session and
communicate with instruments over a GPIO connection. The example
programs in this chapter are also provided in C\SAMPLES\MISC (for C/C++)
and VB\SAMPLES\MISC (for Visual Basic) subdirectories. This chapter
includes:

B [ntroduction to GPIO Interfaces
B Using GPIO Interface Sessions
B Example GPIO Interface Programs

110 Chapter 5

Using SICL with GPIO
Introduction to GPIO Interfaces

Introduction to GPIO Interfaces

This section introduces the GPIO interface, including:

B GPIO Interface Overview
W Selecting a GPIO Communications Session
B SICL GPIO Functions

GPIO Interface Overview

As shown in the following figure, a typical GPIO interface consists of a
Windows PC with an E2075A GPIO card that is connected to a GPIO
instrument via a GPIO cable.

4)

GPIO Interface (E2075A ISA Card)

Windows PC GPIO
Instrument

GPIO Cable

E2075A ISA Card

Chapter 5 111

Configuring GPIB

Interfaces

Example:

Configuring GPIO

Interfaces

Using SICL with GPIO
Introduction to GPIO Interfaces

An 10 interface can be defined as both a hardware interface and as a
software interface. The purpose of the IO Config utility is to associate a
unique interface name with a hardware interface.

The IO Libraries use an Interface Name or Logical Unit Number to identify an
interface. This information is passed in the parameter string of the iopen
function call in a SICL program. 10 Config assigns an Interface Name and
Logical Unit Number to the interface hardware, as well as other necessary
configuration values for an interface when the interface is configured. See
the Agilent 10 Libraries Installation and Configuration Guide for Windows
for information on 10 Config.

The GPIO interface system in the following figure consists of a Windows PC
with an E2075A GPIO card that is connected to a GPIO instrument via GPIO
cable.

The 10 Config utility has been used to assign the E2075A GPIO card a
SICL name of “gpio12”. Since unique names have been assigned by IO
Config, you can now use the SICL iopen command to open the I/O paths

-

Interface SICL Name Windows PC GPIO Cable GPIO Instrument
SICL Name
"gpio12" E2075 GPIO Card

to the GPIO instruments as shown in the figure.

GPIO Interface (E2075A ISA Card)

-

SICL Addressing

iopen

("gpio12") Open |10 path to GPIO instrument /

112 Chapter 5

Using SICL with GPIO
Introduction to GPIO Interfaces

Selecting a GPIO Communications Session

GPIO is a parallel interface that is flexible and allows a variety of custom
connections. Although GPIO typically requires more time to configure than
GPIB, the speed and versatility of GPIO make it an excellent choice for
many tasks.

NOTE

GPIO is only supported with SICL on Windows 95, Windows 98,
Windows 2000, Windows Me, and Windows NT. GPIO is not supported
with SICL via LAN.

Once you have configured your system for GPIO communications, you can
start programming with the SICL functions. If you have programmed GPIO
before, you will probably want to open the interface and start sending
commands.

With GPIB, there can be multiple devices on a single interface. These
interfaces support a connection called a device session. With GPIO, only
one device is connected to the interface. Therefore, communication with
GPIO devices must be using an interface session.

SICL GPIO Functions

Function Name Action

igpiogetwidth Returns current width (in bits) of the GPIO data ports.

igpiosetwidth Sets width (in bits) (8 or 16) of the GPIO data ports. .

igpioctrl Sets these characteristics of the GPIO interface:

Request Characteristic Settings
I_GPIO_AUTO_HDSK Auto-Handshake mode 1or0
I_GPIO_AUX Auxiliary Control lines 16-bit mask
I_GPIO_CHK PSTS Check PSTS before read/write| 1 or0

Chapter 5 113

Using SICL with GPIO

Introduction to GPIO Interfaces

igpioctrl

Sets these characteristics of the GPIO interface:

Request

Characteristic

Settings

I_GPIO_CTRL

Control lines

I_GPIO_CTRL_CTLO
I_GPIO_CTRL _CTL1

I_GPIO_DATA

Data Output lines

8-bit or 16-bit mask

I_GPIO_PCTL_DELAY

PCTL delay time

0-7

I_GPIO POLARITY

Logical polarity

0-31

I_GPIO_READ CLK

Data input latching

See Chapter 9

I_GPIO_READ_EOI

END termination pattern

I_GPIO_EOI_NONE
or 8-bit or 16-bit mask

I_GPIO_SET_PCTL

Start PCTL handshake

1

igpiostat

Gets this information about the GPIO interface:

Request

Characteristic

Value

I_GPIO_CTRL

Control Lines

I_GPIO_CTRL_CTLO
I_GPIO_CTRL_CTL1

I_GPIO_DATA

Data In lines

16-bit mask

I_GPIO_INFO

GPIO information

I_GPIO_AUTO_HDSK
I_GPIO_CHK_PSTS
I_GPIO_EIR
I_GPIO_ENH_MODE
I_GPIO_PSTS
I_GPIO_READY

I_GPIO_READ_EOI

END termination pattern

I_GPIO_EOI_NONE
or 8-bit or 16-bit mask

I_GPIO_STAT

Status lines

I_GPIO_STAT_STIO
I_GPIO_STAT_STI1

114

Chapter 5

GPIO Interface
Sessions Interrupts

Using SICL with GPIO
Using GPIO Interface Sessions

Using GPIO Interface Sessions

GPIO Interface sessions are used for GPIO data transfer, interrupt, status,
and control operations. When communicating with a GPIO interface
session, the programmer must specify the interface name.

Addressing GPIO Interfaces

To create an interface session on GPIO, specify the interface logical unit or
symbolic name in the addr parameter of the iopen function. The interface
logical unit and symbolic name are defined by running the IO Config utility.
To open 10 Config, click the Agilent IO Libraries Control (on the taskbar)
and click Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on 10 Config. Some
example addresses for GPIO interface sessions are:

gpio An interface symbolic name
12 Aninterface logical unit

This example opens an interface session with the GPIO interface.

INST intf;
intf = iopen (“gpio”);

SICL Functions for GPIO Interface Sessions

This section describes how some SICL functions are implemented for
GPIO interface sessions.

There are specific interface session interrupts that can be used. See
isetintr in Chapter 9 - SICL Language Reference for information on the
interface session interrupts for GPIO.

Chapter 5 115

Using SICL with GPIO
Using GPIO Interface Sessions

GPIO Interface

Sessions SICL
Functions Function Description
iwrite, The size parameters for non-formatted 1/O functions are always
iread byte counts, regardless of the current data width of the
interface.

iprintf, All formatted 1/O functions work with GP1O. When formatted
iscanf 1/0 is used with 16-bit data widths, the formatting buffers
reassemble the data as a stream of bytes. On Windows, these
bytes are ordered: high-low-high-low...

Because of this “unpacking” operation, 16-bit data widths may
not be appropriate for formatted I/O operations. For iscanf
termination, an END value must be specified using
igpioctrl. See Chapter 9 - SICL Language Reference.

itermchr For 16-bit data widths, only low (least-significant) byte is used.

ixtrig Provides a method of triggering using either the CTLO or CTLA1
control lines. This function pulses the specified control line for
approximately 1 or 2 pusec. The following constants are defined:

I_TRIG_STD Pulse CTLO line
I_TRIG_GPIO_CTLO Pulse CTLO line
I_TRIG_GPIO_CTLl Pulse CTL1 line

itrigger Same as ixtrig (I_TRIG_STD). Pulses the CTLO control line.

iclear Pulses the P_RESET line for at least 12 psec, aborts any
pending writes, discards any data in the receive buffer, and
resets any error conditions. Optionally, clears the Data Out
port, depending on the configuration specified via |0 Config.

ionsrqgq Installs a service request handler for this session. The concept
of service request (SRQ) originates from GPIB. On a GPIB
interface, a device can request service from the controller by
asserting a line on the interface bus. On GPIO, the EIR line is
assumed to be the service request line.

ireadstb Although ireadstb is for device sessions only, since GPIO
has no device sessions, ireadstb is allowed with GPIO
interface sessions. The interface status byte has bit 6 set if EIR
is asserted. Otherwise, the status byte is 0 (zero). This allows
normal SRQ programming techniques in GPIO SRQ handlers.

116 Chapter 5

Example: GPIO
Interface Session
(€)

Using SICL with GPIO
Using GPIO Interface Sessions

Example GPIO Interface Programs

Three example GPIO Interface programs follow:

B Example: GPIO Interface Session (C)
B Example: GPIO Interface Session (Visual Basic)
B Example: GPIO Interrupts (C)

/* gpiomeas.c

This program:

- Creates a GPIO session with timeout and error checking
- Signals the device with a CTLO pulse

- Reads the device’s response using formatted I/0 */

#include <sicl.h>

main ()

{
INST id; /* interface session id */
float result; /* data from device */

#if defined (_ BORLANDC) && !defined (_ WIN32)
_InitEasyWin(); /* required for Borland EasyWin programs */
#endif

/* log message and exit program on error */
ionerror (I _ERROR EXIT);

/* open GPIO interface session, with 3 sec timeout*/
id = iopen (“gpio”);
itimeout (id, 3000);

/* setup formatted I/0 configuration */
igpiosetwidth (id, 8);
igpioctrl(id, I GPIO READ EOI, *‘\n’);

/* monitor the device’s PSTS line */
igpioctrl (id, I GPIO CHK PSTS, 1);

/* signal the device to take a measurement */
itrigger (id);

Chapter 5 117

Using SICL with GPIO
Using GPIO Interface Sessions

/* get the data */

iscanf (id, “%f%*t”, &result);

printf ("Result = %$f\n”, result);

/* This call is a no-op for WIN32 applications.*/
_siclcleanup();

/* close session */
iclose (id); 1}

Example: GPIO Option Explicit
Interface Session trrrrrrrrrrinnriinrriii i rrr i nrrnarnrrnn eyt
(Visual Basic) gpiomeas.frm

' This program does the following:

' - Creates a GPIO session with timeout and error

! checking

' - Signals the device with a CTLO pulse

' - Reads the device's response using formatted I/O
ryYyyyyyyyryrvyyyryyrryryyryrryryrvrrrrrrvrvrvrrvrrrrrrrrrrrrrrrrvrrvruny

Private Sub Form Load()
cmdMeas.kEnabled = True
End Sub

Sub cmdMeas Click()

Dim id As Integer ' device session id

Dim retVal As Integer ' function return value
Dim buf As String ' buffer for displaying
Dim real data As Double ' data from device

' Set up an error handler within this subroutine
' that will be called if a SICL error occurs.
On Error GoTo ErrorHandler

' Disable the button used to initiate I/0 while I/O is
' being performed.
cmdMeas.kEnabled = False

' Open an interface session using a known symbolic name
' "gpiol2" is the SICL Interface name as defined in:
' Start | Programs | Agilent IO Libraires | IO Config
' Change this to the SICL Name you have defined
id = iopen("gpiol2")

118 Chapter 5

Using SICL with GPIO
Using GPIO Interface Sessions

Set the I/0 timeout value for this session to 3 seconds
Call itimeout (id, 3000)

Setup formatted I/0O configuration
Call igpiosetwidth (id, 8)
Call igpioctrl(id, I_GPIO READ EOI, 10)

Signal the device to take a measurement
Call itrigger(id)

! Get the data
retVal = ivscanf(id, "%1f", real data)

Display the response as string in a Message Box
buf = StrS$(real data)
MsgBox (buf, vbOKOnly, "GPIO Data")

Close the device session
Call iclose(id)

' Enable the button used to initiate I/0
cmdMeas.Enabled = True

Exit Sub
ErrorHandler:

Display the error message string in a Message Box
retVal = MsgBox (Error$, vbExclamation, "SICL Error")

Close the device session if iopen was successful.
If id <> 0 Then

iclose (id)
End If

' Enable the button used to initiate I/0
cmdMeas.Enabled = True

Exit Sub
End Sub

Chapter 5 119

Example: GPIO
Interrupts (C)

Using SICL with GPIO
Using GPIO Interface Sessions

rryrryryryryyryrrrrryrrrrryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrvrvrvrvrurouy

' The following routine is called when the application's
' Start Up form is unloaded. It calls siclcleanup to
' release resources allocated by SICL for this
' application.
rryrryryryryyryrrrrrvryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrvrvrrvrurouy
Sub Form Unload(Cancel As Integer)

Call siclcleanup ' Tell SICL to clean up for this task
End Sub

/* gpiointr.c
This program:
- Creates a GPIO session with error checking
- Installs an interrupt handler and enables EIR interrupts
- Waits for EIR; invokes the handler for each interrupt

*/
#include <sicl.h>

void SICLCALLBACK handler (id, reason, sec)
INST id;
int reason, sec;
{
if (reason == I INTR GPIO_EIR) {
printf ("EIR interrupt detected\n”);

Proper protocol is for the peripheral device to hold
EIR asserted until the controller “acknowledges” the
interrupt. The method for acknowledging and/or responding
to EIR is very device-dependent. Perhaps a CTLx line is
pulsed, or data is read, etc. The response should be
executed at this point in the program. */

X% X o X %

}

else
printf (“Unexpected Interrupt; reason=%d\n”, reason);

main ()

{

INST intf; /* interface session id */

120 Chapter 5

Using SICL with GPIO
Using GPIO Interface Sessions

#if defined (__BORLANDC) && !defined (_ WIN32)
_InitEasyWin(); /* required for Borland EasyWin programs */
#endif

/* log message and exit program on error */
ionerror (I _ERROR EXIT);

/* open GPIO interface session */
intf = iopen (“gpio”);

/* suspend interrupts until configured */
iintroff ();

/* configure interrupts */
ionintr (intf, handler);
isetintr (intf, I INTR GPIO EIR, 1);

/* wait for interrupts */
printf ("Ready for interrupts\n”);
while (1) {
iwaithdlr (0); /* optional timeout can be specified here*/
}
/* iwaithdlr performs an automatic iintron(). If your program
/* does concurrent processing, instead of waiting you need
/* to execute iintron() when you are ready for interrupts.
/*
/* This simplified example loops forever. Most real applications
* would have termination conditions that cause the loop to exit.
*/

iclose (id) ;

/* This call is a no-op for WIN32 applications. */

_siclcleanup();

}

Chapter 5 121

Using SICL with GPIO
Using GPIO Interface Sessions

Notes:

122 Chapter 5

Using SICL with VXI

123

Using SICL with VXI

This chapter shows how to use SICL to communicate over the VXIbus.
The example programs in this chapter are also provided in the
C\SAMPLES\MISC subdirectory under the SICL base directory. This
chapter includes:

Introduction to VXI Interfaces

Programming VXI Message-Based Devices
Programming VXI Register-Based Devices
Programming VXI Interface Sessions
Miscellaneous VXI Interface Programming

124 Chapter 6

Typical VXI
Interface

Using SICL with VXI
Introduction to VXI Interfaces

Introduction to VXI Interfaces

This section provides an introduction to using SICL with the VXI interface,
including:

VXI Interfaces Overview

VXI Communications Sessions

VXI Device Types

SICL Functions for VXI

VXl Interfaces Overview

This section provides an overview of VXI interfaces, including typical

hardware configuration, using 10 Config, and example configuration using
SICL.

As shown in the following figure, a typical typical VXI interface consists of
one of two main hardware configurations: E1406A Command Module or
E8491B IEEE-1394 to VXI Module.

B The E1406A Command Module version consists of a Windows PC
with an 82350 (or equivalent) GPIB card and a VXI mainframe with
an E1406A Command Module and one or more VXI instruments.
I/O communication from the PC to the VXI instruments is via the
GPIB card, GPIB cable, and E1406A Command Module.

B The E8491B Module version consists of a Windows PC with an
IEEE-1394 OHCI-Compliant (FireWire) PC card and a VXI
mainframe with an E8491B IEEE-1394 to VXI Module and one or
more VXI instruments. /O communication from the PC to the VXI
instruments is via the PC card, IEEE-1394 to VXI cable, and
E8491B Module.

Chapter 6 125

Using SICL with VXI
Introduction to VXI Interfaces

4 N

VXI Interfaces

Windows PC VXI Mainframe

\Y \% \Y

X X X

E | | [
1

4 | I |

GPIB 0 n n n

82359 GPIB Card 6 s s s
A

t t t

r r r

% v %
e | 7]) f
8
4
IEEE-1394 | o I I I
IEEE-1394 OHCI- to VXI 1 n n n
Compliant B S s s
PC Card t t t
r r r

- /

Configuring VXI An 10 interface can be defined as both a hardware interface and as a
Interfaces software interface. The purpose of the IO Config utility is to associate a
unique interface name with a hardware interface.

The IO Libraries use an Interface Name or Logical Unit Number to identify an
interface. This information is passed in the parameter string of the iopen
function call in a SICL program. 10 Config assigns an Interface Name and
Logical Unit Number to the interface hardware, as well as other necessary
configuration values for an interface when the interface is configured. See
the Agilent 10 Libraries Installation and Configuration Guide for Windows
for information on 10 Config.

126 Chapter 6

Using SICL with VXI
Introduction to VXI Interfaces

Example: VXI The VXl interface system in the following figure consists of a Windows PC

(E1406A) Interface with an 82350 GPIB card that connects to an E1406A Command Module in
a VXI Mainframe. The VXI mainframe includes one or more VXI instruments.
The E1406A is configured for primary address 9 and logical address (LA) 0.
The three VXI instruments shown have logical addresses 8, 16, and 24.

The 10 Config utility has been used to assign the 82350 GPIB card a SICL
name of “hpib7”. With these names assigned to the interfaces, the VISA
addressing is as shown in the figure. For information on the E1406A
Command Module, see the Agilent E1406A Command Module User’s
Guide. For information on VXI instruments, see the applicable VX/
Instrument User’s Guide.

a N

VXI Interface (E1406A Command Module)

Interface SICL Name Windows PC VXI Mainframe

\ \% \
X X X
| | |

Primary E
Address 9 1 | | |

SICL Name
2= (0 n n n
6 s s s
"hpib7" 82350 GPIB Card A t t t
GPIB r r r
LAO | LAS8 LA 24 LA 16

SICL Addressing

iopen ("vxi,24"); Open IO path to VXI instrument at logical address 24 using
82350 GPIB Card and E1406A VXI Command Module at
GPIB primary address 9

Chapter 6 127

Using SICL with VXI
Introduction to VXI Interfaces

Example: VXI The VXl interface system in the following figure consists of a Windows PC
(E8491) Interface with an E8491 PC card that connects to an E8491B IEEE-1394 to VXI

Module in a VXI Mainframe. The VXI mainframe includes one or more VXI
instruments. For this system, the three VXI instruments shown have logical
addresses 8, 16, and 24.

The 10 Config utility has been used to assign the E8491 PC card a SICL
name of “vxi”. With this name assigned to the interface, you can use the
SICL addressing shown in the figure. For information on the E8491B
module, see the Agilent E8491B User’s Guide. For information on VXI

-

instruments, see the applicable VX! Instrument User’s Guide.

VXI Interface (E18491B IEEE-1394 to VXI Module)

Interface SICL Name Windows PC IEEE-1394 to VXI VXI Mainframe

\% \Y \%

X X X

E | | |

2 | | |

SICL Name 9 n n n

1 s s s

"vxi" E8491 PC Card B t t t

r r r

LA8 | LA24 LA 16

-

SICL Addressing

iopen ("vxi,24") Open 10 path to VXI instrument at logical address 24 using
E8491 PC Card and E8491 IEEE-1394 to VXI Module J

128 Chapter 6

Message-Based
Devices

Register-Based
Devices

Using SICL with VXI
Introduction to VXI Interfaces

VXI Communications Sessions

Before you begin programming your VXI system, ensure the system is set
up and operating correctly. To begin programming a VXI system, you must
first determine the type of communication session to be used. The two types
of supported VXI communication sessions follow. Commander Sessions are
not supported with VXI interfaces.

B Device Session. A VXI device session allows direct access to a
device regardless of the type of interface to which the device is
connected.

B Interface Session. A VXl interface session allows direct, low-level
control of the specified interface that provides full control of the
activities on a given interface, such as VXI.

Device sessions are the recommended method for communicating while
using SICL since they provide the highest level of programming, best overall
performance, and best portability.

VXI Device Types

There are two different types of VXI devices: message-based and register-
based. To program a VXlbus system that is mixed with both message-based
and register-based devices, open a communications session for each device
in the system and program as shown in the following sections.

Message-based devices have their own processors that allow them to
interpret high-level Standard Commands for Programmable Instruments
(SCPI) commands. When using SICL, place the SCPI command within the
SICL output function call and the message-based device interprets the
SCPI command.

Register-based devices typically do not have their own processor to interpret
high-level commands and therefore accept only binary data. You can use
the following methods to program register-based devices:

Chapter 6 129

Using SICL with VXI
Introduction to VXI Interfaces

Interpreted SCPI. Use the SICL iscpi interface and program using
high-level SCPI commands. Interpreted SCPI (I-SCPI) interprets
high-level SCPI commands and sends the data to the instrument.
[-SCPI is supported over LAN, but register programming (imap,
ipeek, ipoke, etc) is not supported over LAN. I-SCPI runs on a
LAN server in a LAN-based system.

Direct Register programming. Do register peeks and pokes and
program directly to the device’s registers with the vxi interface.

Compiled SCPI. Use the C-SCPI product and program with high-level
SCPI commands (achieve higher throughput as well).

Command Module. Use a Command Module to interpret the high-
level SCPI commands. The gpib interface is used with a Command
Module. A Command Module may also be accessed over a LAN
using a LAN-to-GPIB gateway.

SICL Functions for VXI Interfaces

A summary of VXI-specific functions follows. Using these VXI interface
specific functions means that the program cannot be used on other
interfaces and, therefore, becomes less portable. These functions will work
over a LAN-gatewayed session if the server supports the operation.

Function Name Action
ivxibusstatus Returns requested bus status information
ivxigettrigroute Returns the routing of the requested trigger line
ivxirminfo Returns information about VXI devices
ivxiservants Identifies active servants
ivxitrigoff De-asserts VXI trigger line(s)
ivxitrigon Asserts VXI trigger line(s)
ivxitrigroute Routes VXI trigger lines
ivxiwaitnormop Suspends until normal operation is established
ivxiws Sends a word-serial command to a device

130

Chapter 6

Using SICL with VXI
Programming VXI Message-Based Devices

Programming VXI Message-Based Devices

Message-based devices have their own processors which allow them to
interpret high-level SCPI commands. When using SICL, place the SCPI
command within the SICL output function call and the message-based
device interprets the SCPl command. SICL functions used for programming
message-based devices include iread, iwrite, iprintf, iscanf, efc..

NOTE

If a message-based device has shared memory, you can access the
device’s shared memory with register peeks and pokes. See
“Programming VXI Register-Based Devices” for information on register
programming.

VXI Message-Based Device Functions

This section describes how some SICL functions are implemented for VXI
device sessions for message-based devices.

Function Action
Name

iwrite Sends data to a (message-based) servant using the byte-serial
write protocol and the byte available word-serial command.

iread Reads data from a (message-based) servant using the byte-
serial read protocol and the byte request word-serial command.

ireadstb Performs a VXI readSTB word-serial command.

itrigger Sends word-serial frigger to specified message-based device.

iclear Sends word-serial device clear to specified message-based
device.

ionsrq Can be used to catch SRQs from message-based devices.

Chapter 6

131

Addressing
Guidelines

Using SICL with VXI
Programming VXI Message-Based Devices

Addressing VXI Message-Based Devices

To create a VXI device session, specify the interface symbolic name or
logical unit and a device’s address in the addr parameter of the iopen
function. The interface symbolic name and logical unit are set by running the
IO Config utility. To open 10 Config, click the Agilent IO Libraries Control and
then click Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on 10 Config.

Primary address must be between 0 and 255. The primary address
corresponds to the VXI logical address and specifies the address in A16
space of the VXI device. SICL supports only primary addressing on the VXI
device sessions. Specifying a secondary address causes an error.

Some example addresses for VXI device sessions follow. These examples
use the default symbolic name specified during the system configuration. To
change the name listed, you must also change the symbolic name or logical
unit specified during the configuration. The name used in the SICL program
must match the logical unit or symbolic name specified in the system
configuration. Other possible interface names are VXI, vxi, etc..

vXi, 24 A device address corresponding to the device at primary
address 24 on the vxi interface.

vxi,128 A device address corresponding to the device at primary
address 128 on the vxi interface.

An example of opening a device session with the VXI device at logical
address 64 follows.

INST dmm;
dmm = iopen (“vxi,64”);

132 Chapter 6

Example: VXI
Message-Based
Device Session (C)

Using SICL with VXI
Programming VXI Message-Based Devices

This example program opens a communication session with a VXI
message-based device and measures the AC voltage. The measurement
results are then printed.

/* vximdev.c
This example program measures AC voltage on a
multimeter andprints out the results */

#include <sicl.h>
#include <stdio.h>

main ()
{
INST dvm;
char strres[20];

/* Print message and terminate on error */
ionerror (I _ERROR EXIT);

/* Open the multimeter session */
dvm = iopen (“vxi,24”);
itimeout (dvm, 10000);

/* Initialize dvm */
iwrite (dvm, “*RST\n”, 5, 1, NULL);

/* Take measurement */
iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”, 23, 1, NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

/* Print the results */
printf ("Result is %s\n”, strres);

/* Close the multimeter session */
iclose (dvm) ;

}

Chapter 6 133

Example: VXI
Message-Based
Device Session
(Visual Basic)

Using SICL with VXI
Programming VXI Message-Based Devices

rryrryryryryyryryryrryrvyryrrrryrryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrruroua

vximdev.bas

This example program opens a communication session

with a VXI message-based device and measures the DC
voltage. The measurement results are then printed.

rfrryrryrvryrvryrvryrvryryvrvrrrrvrrrryrvrrrrrrvrrrrrrrrrrrrrrrrrrrrrrovn

Sub Main ()

Dim id As Integer

Dim strres As String * 80 'Fixed-length String
Dim actual As Long

' Open the instrument session

' "vxi" is the SICL Interface name as defined in:

' Start | Programs | Agilent IO Libraries | IO Config
' "216" is the instrument logical address. Change

' these to the SICL Name and logical address for

' your instrument

id = iopen("vxi,216")

' Set timeout to 10 seconds
Call itimeout (id, 10000)

! Initialize dvm
Call iwrite(id, "*RST" + Chr$(10), o6, 1, 0&)

! Take measurement
Call iwrite(id, "MEAS:VOLT:DC? 1, 0.001" +
Chr$(10), 23, 1, 0&)

' Read result
Call iread(id, strres, 80, 0&, actual)

' Display the results

MsgBox "Result is: " + strres, vbOKOnly,
"DVM DCV Result"

' Close the instrument session

Call iclose(id)

' Tell SICL to cleanup for this task
Call siclcleanup

End Sub

134 Chapter 6

Using SICL with VXI
Programming VXI Register-Based Devices

Programming VXI Register-Based Devices

You can use one or more of the following methods to communicate with VXI
register-based devices.

B il-SCPI Interface Programming. Use the SICL iscpi interface and
program using SCPI commands. The iscpi interface interprets the
SCPI commands and allows direct communication with register-
based devices.This method is supported over LAN. Agilent VISA
must be installed to use the iscpi interface.

B Direct Register Programming. Use the vxi interface to program
directly to the device’s registers with a series of register peeks and
pokes. This method can be very time-consuming and difficult. This
method is not supported over LAN.

B Compiled SCPI Programming. The Compiled SCPI (C-SCPI) product
is a programming language that can be used with SICL to program
register-based devices using SCPI commands. Because Compiled
SCPI interprets SCPI commands at compile time, Compiled SCPI
can be used to achieve high throughput of register-based devices.
See the applicable C-SCPI documentation for programming
information.

B Command Module Programming. You can use a Command Module
to communicate with VXI devices via GPIB. The Command Module
interprets the high-level SCPI commands for register-based
instruments and sends low-level commands over the VXlbus
backplane to the instruments. See Chapter 4 - Using SICL with
GPIB for details on communicating via a Command Module.

Chapter 6 135

Functions Not
Supported

Addressing
Guidelines

Using SICL with VXI
Programming VXI Register-Based Devices

Addressing VXI Register-Based Devices

To create a device session, specify the interface symbolic name or logical
unit and a device’s address in the addr parameter of the iopen function.
The interface symbolic name and logical unit are set by running the 10
Config utility. To open 10 Config, click the Agilent IO Libraries Control and
then click Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on 10 Config.

Because VXI register-based devices do not support the word serial protocol
and other features of message-based devices, the following SICL functions
are not supported with register-based device sessions unless you use the
iscpi interface. All other functions will work with all VXI devices (message-
based, register-based, etc.). Use the i?peek and i?poke functions to
communicate with register-based devices.

Category Functions Not Supported
Non-formatted 1/0 iread, iwrite, itermchr
Formatted 1/O iprintf, iscanf, ipromptf, ifread,

ifwrite, iflush, isetbuf, isetubuf

Device/Interface Control iclear, ireadstb, isetstb, itrigger
Service Requests igetonsrq, ionsrq

Timeouts igettimeout, itimeout

VXI Specific ivxiws

The primary address corresponds to the VXI logical address and must be
between 0 and 255. SICL supports only primary addressing on VXI device
sessions. Specifying a secondary address causes an error. Some example
addresses for VXI device sessions follow.

These examples use the default symbolic name specified during the system
configuration. To change the name listed, you must also change the
symbolic name or logical unit specified during the configuration. The name
used in your SICL program must match the logical unit or symbolic name
specified in the system configuration. Other possible interface names are
VXI, vxi, etc.

136 Chapter 6

Using the I-SCPI
Interface

Using SICL with VXI
Programming VXI Register-Based Devices

iscpi,32 A register-based device address corresponding to the
device at primary address 32 on the iscpi interface.

vXi,24 A device address corresponding to the device at primary
address 24 on the vxi interface.

vxi, 128 A device address corresponding to the device at primary
address 128 on the vxi interface.

An example of opening a device session with the VXI device at logical
address 64 follows.

INST dmm;
dmm = iopen (“vxi,64”);

Programming Using the I-SCPI Interface

The Interpreted SCPI (I-SCPI or iscpi) interface allows you to program
register-based instruments with high-level SCPI commands. To program
using the iscpi interface, open a device session with a specific register-
based instrument and then program using the SICL functions such as
iprintf, iscanf, and ireadstb.

To use the iscpi interface, you must first have configured the system with
the 10 Config utility to include iscpi as an interface. See the Agilent 10
Libraries Installation and Configuration Guide for Windows for information
on 10 Config. When opening the device session, you will need to specify
iscpi as the interface type in the SICL iopen call.

The iscpi interface includes drivers for most Agilent register-based
devices. These drivers are located in the VISA directory specified during the
Agilent 10 Libraries installation (default is C:\Program Files\VISA\WIN95\BIN
(Windows 95/98/Me) or C:\Program Files\VISA\WINNT\BIN (Windows NT/
2000). See the C:\Program Files\VISA\WINxx\BIN\iscpinfo.TXT file for a

list of currently supported register-based devices.

Chapter 6 137

[-SCPI SICL
Functions

Addressing
Guidelines

Using SICL with VXI
Programming VXI Register-Based Devices

The iscpi interface is used to program VXI register-based instruments.
However, the VXI specific and register-based specific SICL functions such
as ivxiws, imap, and ipeek are not necessary and are not implemented
for the iscpi interface. The following table describes how some SICL
functions are implemented for iscpi device sessions.

Function Action
Name
iwrite Sends the SCPI commands to the register-based instrument

driver’s input buffer. The driver will interpret the command and
do register peeks and pokes. If the command is a query, the
driver puts data into its output buffer.

iread Reads the data from the register-based instrument driver’s
output buffer.

ireadstb Performs the equivalent of a serial poll (SPOLL).
itrigger Performs quivalent of addressed group execute trigger (GET).
iclear Performs the equivalent of a device clear (DCL) on the device

corresponding to this session.

For a SICL application that accesses VXI devices using GPIB and a
Command Module, you can port your application to use the iscpi interface
and directly access the VXI backplane without the use of the Command
Module. Do this by changing the iopen function to use the iscpi interface
followed by the device’s logical address.

The simplest way to address a register-based device using the Interpreted
SCPI (I-SCPI or iscpi) interface is to specify the interface logical unit or
symbolic name and a device logical address in the addr parameter of the
iopen function. I-SCPI automatically configures your system according to
combining rules that determine how instruments are set up relative to other
VXI instruments. For example:

dmm=iopen (“iscpi,24”);

Generally, when an iopen is performed, an instrument is formed consisting
of all devices at logical addresses contiguous to the base logical address
passed in the address string. For example, if you open an instrument at
logical address 24 with the next logical address at 25, the iscpi interface
searches for an instrument driver that supports the devices found.

138 Chapter 6

I-SCPI Interrupts
and Service
Requests

Using SICL with VXI
Programming VXI Register-Based Devices

For control of logical addresses used to form a particular instrument, you
can use an explicit list in the logical address portion of the iopen call.
Define the instrument by adding a colon after the interface symbolic name,
followed by the backplane name as specified in the 10 Config utility
(backplane is the symname of the VXI backplane SICL driver, usually vxi).
Then, add the instrument logical addresses enclosed within parentheses
separated by commas.

This example combines instruments at logical address 24 and 25 to form
one instrument. The logical addresses of these instruments do not have to
be contiguous.

dmm=iopen (“iscpi:vxi, (24,25)");

To specify an instrument driver to use for a specific set of logical addresses,
add the instrument driver name within brackets. This allows you to create
your own instrument drivers or you can form unique virtual instrument
combinations. For example:

dmm=iopen (“iscpi,24[E1326]");

To specify an instrument driver plus the instruments grouped together to
form the instrument, use the following form. The iopen call will run faster if
you specify an instrument driver name since it does not have to search
through all the instrument drivers for a match.

dmm=iopen (“iscpi[E1326]:vxi, (24,25)");

The directory location specified during the SICL installation is searched for a
matching instrument driver.

The iscpi interface does not support interrupts, so the SICL ionintr
function is not implemented for iscpi device sessions. There are no
device-specific interrupts for the iscpi interface.

iscpi device sessions support Service Requests (SRQ) in the same
manner as GPIB. When one device issues an SRQ, all iscpi device
sessions that have SRQ handlers installed (see ionsrqin Chapter 9 -
SICL Language Reference) will be informed. This is an emulation of how
GPIB handles the SRQ line.

The interface cannot distinguish which device requested service, so iscpi
acts as if all devices require service. Your SRQ handler can retrieve the
device’s status byte by using the ireadstb function. The status byte can
be used to determine if the instrument needs service.

Chapter 6 139

Example: I-SCPI
Interface Session

Using SICL with VXI
Programming VXI Register-Based Devices

It is good practice to ensure that a device is not requesting service before
leaving the SRQ handler. The easiest technique for this is to service all
devices from one handler.

The iscpi interface was designed to closely simulate control of register-
based instruments using a Command Module via GPIB. When an iopen is
performed, I-SCPI searches for an instrument driver consisting of all the
devices at logical addresses contiguous to the base logical address.

If no instrument driver supports the list of contiguous logical addresses, the
device with the highest logical address will be removed and the search
process repeated. This continues until the driver is found or this list is
exhausted. If no instrument driver is found, the iopen call will fail.

Once an iopen is successful, I-SCPI runs in an infinite loop waiting to parse
SCPI commands for the instrument. A separate process is created for each
instrument that is opened.

This example program opens a communication session with a VXI register-
based device with the iscpi interface and then uses SCPI commands to
measure the AC voltage and print out the results.

/* vxiiscpi.c
This example program measures AC voltage on a
multimeter and prints out the results */

#include <sicl.h>
#include <stdio.h>

main ()
{
INST dvm;
char strres[20];

/* Print message and terminate on error */
ionerror (I _ERROR _EXIT);

/* Open the multimeter session */
dvm = iopen (“iscpi,24”);
itimeout (dwvm, 10000);

/* Initialize dvm */
iwrite (dvm, “*RST\n”, 5, 1, NULL);

140 Chapter 6

Mapping Memory
Space for Register-
Based Devices

Using SICL with VXI
Programming VXI Register-Based Devices

/* Take measurement */
iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”, 23, 1, NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

/* Print the results */
printf ("Result is %s\n”, strres);

/* Close the multimeter session */
iclose (dvm) ;

Programming Directly to Registers

When communicating with register-based devices, you must either send a
series of peeks and pokes directly to the device’s registers or use a
command interpreter to interpret the high-level SCPI commands. Command
interpreters include the iscpi interface, Agilent Command Module,
Agilent B-Size Mainframe (built-in Command Module), or Compiled SCPI
(C-SCPI).

When sending a series of peeks and pokes to the device’s registers, use
the following process. This procedure is only used on register-based devices
that are not using the iscpi interface. Note that programming directly to the
registers is not supported over LAN.

B Map memory space into your process space.
B Read the register’s contents using i?peek.
B Write to the device registers using i?poke.
B Unmap the memory space.

When using SICL to communicate directly to the device’s registers, you
must map a memory space into the process space by using the SICL
imap function:

imap (id, map_space, pagestart, pagecnt, suggested) ;

This function maps space for the interface or device specified by the id
parameter. pagestart, pagecnt, and suggested indicate the page number,
numbesr of pages, and a suggested starting location respectively.
map_space determines which memory location to map the space.

Chapter 6 141

Using SICL with VXI
Programming VXI Register-Based Devices

Due to hardware constraints on given devices or interfaces, not all address
spaces may be implemented. In addition, there may be a maximum number
of pages that can be simultaneously mapped.

If a request is made that cannot be granted due to hardware constraints,
the process will hang until the desired resources become available. To avoid
this, use the isetlockwait with the flag parameter set to 0 and thus
generate an error instead of waiting for the resources to become available.
You may also use the imapinfo function to determine hardware constraints
before making an imap call. Some Valid map_space choices follow..

Function Description
I _MAP Al6 Maps in VXI A16 address space (device or interface sessions, 64K byte pages).
I_MAP A24 Maps in VXI A24 address space (device or interface sessions, 64K byte pages).
I _MAP A32 Maps in VXI A32 address space (device or interface sessions, 64K byte pages).

I_MAP_VXIDEV

Maps in VXI A16 device registers (device session only, 64 bytes).

I_MAP_EXTEND

Maps in VXI device extended memory address space in A24 or A32 address space
(device sessions only).

I_MAP_SHARED

Maps in VXI A24/A32 memory that is physically located on the computer
(sometimes called local shared memory, interface sessions only).

I_MAP AM |
address modifer

Maps in the specified region (address modifer) of VME address space. See the
“Communicating with VME Devices” section later in this chapter for more
information on this map space argument

Some example imap function calls follow.

/* Map to the VXI device vm starting at pagenumber 0
for 1 page */
base address = imap (vm, I MAP VXIDEV, 0, 1, NULL);

/* Map to A32 address space (16 Mbytes) */
ptr = imap (id, I MAP A32, 0x000, 0x100, NULL);

/* Map to a device’s A24 or A32 extended memory */
ptr=imap (id, I MAP EXTEND, O, 1, 0);

/* Map to a computer’s A24 or A32 shared memory */
ptr=imap (id, I MAP SHARED, 0, 1, 0);

142 Chapter 6

Reading and Writing
to Device Registers

Example: VXI
Register-Based
Programming (C)

Using SICL with VXI
Programming VXI Register-Based Devices

Use the following table to determine which map-space argument to use with
a SICL imap/iunmap function. All accesses through the * D32 map
windows can only be 32-bit transfers. The application software must do a
32-bit assignment to generate the access and only accesses on 32-bit
boundaries are allowed. If 8- or 16-bit accesses to the device are also
necessary, a normal I_MAP A16/24/32 map must also be requested.

imap/iunmap Widths VME Data
(map-space argument) Access Mode
I_MAP_Al6 D8,D16 Supervisory
I_MAP A24 D8,D16 Supervisory
I_MAP A32 D8,D16 Supervisory
I_MAP Al6 D32 D32 Supervisory
I_MAP_A24 D32 D32 Supervisory
I_MAP_A32 D32 D32 Supervisory

When you have mapped the memory space, use the SICL i?peek and
i?poke functions to communicate with register-based instruments. With
these functions, you need to know which register you want to communicate
with and the register’s offset. See the instrument’s user’s manual for a
description of the registers and register locations. See Chapter 9 - SICL
Language Reference for a description of the i ?peek and i ?poke functions.
An example using iwpeek follows.

id = iopen (“wvxi,24");
addr = imap (id, I_MAP VXIDEV, 0, 1, 0);
reg data = iwpeek (addr + 4);

Be sure you use the iunmap function to unmap the memory space when
the space is no longer needed. This frees the mapping hardware so it can be
used by other processes.

This example program opens a communication session with a register-
based device connected to the address entered by the user. The program
then reads the Id and Device Type registers and the prints the register
contents.

Chapter 6 143

Using SICL with VXI
Programming VXI Register-Based Devices

/* vxirdev.c

The following example prompts the user for an instrument
address and then reads the id register and device type
register. The contents of the register are displayed.*/

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

void main () {
char inst addr[80];
char *base addr;
unsigned short id reg, devtype reg;
INST id;

/* get instrument address */

puts (“Please enter the logical address of the
register-based instrument, for example,
vxi,24 : \n”);

gets (inst_addr);

/* install error handler */
ionerror (I _ERROR_EXIT);

/* open communications session with instrument */
id = iopen (inst_addr);
itimeout (id, 10000);

/* map into user memory space */
base addr = imap (id, I MAP VXIDEV, 0, 1, NULL);

/* read registers */
id reg = iwpeek ((unsigned short *) (base addr + 0x00));
devtype reg = iwpeek ((unsigned short *) (base_addr + 0x02));

/* print results */

printf (“Instrument at address %s\n”, inst addr); printf
“ID Register = 0x%4X\n Device Type Register =
0x%4X\n”, id reg, devtype req);

/* unmap memory space */

iunmap (id, base addr, I MAP VXIDEV, 0, 1);

/* close session */
iclose (id);}

144 Chapter 6

Using SICL with VXI
Programming VXI Interface Sessions

Programming VXI Interface Sessions

VXI interface sessions allow direct low-level control of the interface.
However, the programmer must provide all bus maintenance for the
interface and have considerable knowledge of the interface. When using
interface sessions, you must use interface-specific functions which means
the program cannot be used on other interfaces and becomes less portable.

VXl Interface Sessions Functions

The following table describes how some SICL functions are implemented for
VXl interface sessions. I-SCPI interface sessions only support service
requests and locking (ionsrq, ilock, and iunlock).

Function Action
Name
iwrite and Not supported for VXI interface sessions. Returns the
iread I_ERR_NOTSUPP error.
iclear Causes the VXl interface to perform a SYSREST on interface

sessions. This causes all VXI devices to reset. If the iscpi
interface is being used, the iscpi instrument will be
terminated.

If this happens, a No Connect error message occurs and you
must reopen the iscpi communications session. All servant
devices cease to function until the VXI resource manager runs
and normal operation is re-established.

Addressing VXI Interface Sessions

To create an interface session on a VXI system, specify the interface
symbolic name or logical unit in the addr parameter of the iopen function.
The interface symbolic name and logical unit are set by running the 10
Config utility. To open 10 Config, click the Agilent IO Libraries Control and
then click Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on 10 Config.

Chapter 6 145

Addressing
Guidelines

Example: VXI
Interface Session
(€)

Using SICL with VXI
Programming VXI Interface Sessions

Some example addresses for VXI interface sessions follow. These
examples use the default symbolic name specified during the system
configuration. To change the name listed, you must also change the
symbolic name or logical unit specified during the configuration.

The name used in your SICL program must match the logical unit or
symbolic name specified in the system configuration. Other possible
interface names are VXI, vxi, etc. The only interface session operations
supported by I-SCPI are service requests and locking.

vXi An interface symbolic name.

iscpi An interface symbolic name.

This example opens a interface session with the VXI interface.

INST vxi;
vxi = iopen (“vxi”);

This example program opens a communication session with the VXI
interface and uses the SICL interface specific ivxirminfo function to get
information about a specific VXI device. This information comes from the
VXI resource manager and is only valid as of the last time the VXI resource
manager was run.

/* vxiintr.c
The following example gets information about a specific
vxi device and prints it out. */
#include <stdio.h>
#include <sicl.h>

void main () {
int laddr;
struct vxiinfo info;
INST id;

/* get instrument logical address */

printf (“Please enter the logical address of the
register-based instrument, for example,
24 : \n”);

scanf (“%d”, &laddr);

146 Chapter 6

Using SICL with VXI
Programming VXI Interface Sessions

/* install error handler */
ionerror (I _ERROR_EXIT);

/* open a vxi interface session */
id = dopen (“vxi”);
itimeout (id, 10000);

/*read VXI resource manager information for
specified device*/
ivxirminfo (id, laddr, &info);

/* print results */

printf (“Instrument at address %d\n”, laddr);

printf (“Manufacturer’s Id = %s\n Model = %$s\n”,
info.manuf name, info.model name);

/* close session */
iclose (id);

Chapter 6 147

Declaring
Resources

Using SICL with VXI
Miscellaneous VXI Interface Programming

Miscellaneous VXI Interface Programming

This section provides other information for programming via the VXI
interface, including:

B Communicating with VME Devices
B VXI Backplane Memory I/O Performance
B Using VXI-Specific Interrupts

Communicating with VME Devices

Although VXl is an extension of VME, VME is not easy to use in a VXI
system. Since the VXI standard defines specific functionality that would be
custom designs in VME, some resources required for VME custom design
are actually used by VXI. Therefore, there are certain limitations and
requirements when using VME in a VXI system.

NOTE

VME is not an officially supported interface for SICL and is not supported
over LAN.

Use these process when using VME devices in a VXI mainframe:

Declaring Resources

Mapping VME Memory

Reading and Writing to Device Registers
Unmapping Memory

The VXI Resource Manager does not reserve resources for VME devices.
Instead, a configuration file is used to reserve resources for VME devices in
a VXl system. Use the VXI Device Configurator to edit the DEVICES file
(or edit the file directly) to reserve resources for VME devices. The VXI
Resource Manager reads this file to reserve the VME address space and
VME IRQ lines. The VXI Resource Manager then assigns the VXI devices
around the already reserved VME resources.

For VME devices requiring A16 address space, the device’s address space
should be defined in the lower 75% of A16 address space (addresses below
0xCO000). This is necessary because the upper 25% of A16 address space is
reserved for VXI devices.

148 Chapter 6

Mapping VME
Memory

Using SICL with VXI
Miscellaneous VXI Interface Programming

For VME devices using A24 or A32 address space, use A24 or A32 address
ranges just higher than those used by your VXI devices. This will prevent the
VXI Resource Manager from assigning the address range used by the VME
device to any VXI device. (The A24 and A32 address range is software
programmable for VXI devices.)

SICL defaults to byte, word, and longword supervisory access to simplify
programming VXI systems. However, some VME cards use other modes of
access that are not supported in SICL. Therefore, SICL provides a map
parameter that allows you to use the access modes defined in the VMEbus
Specification. See the VMEbus Specification for information on these access
modes.

NOTE

Use care when mixing VXI and VME devices. You must know the VME
address space and offset within that address space the VME devices
use. VME devices cannot use the upper 16K of the A16 address space
since this area is reserved for VXI instruments.

When accessing VME or VXI devices via an embedded controller, current
versions of SICL use the “supervisory data” address modifiers 0x2D,
0x3D, and 0x0D for A16, A24, and A32 accesses, respectively. (Some
older versions of SICL use the “non-privileged data” address modifiers.)

Use the I_MAP_AM | address modifer map space argument in the imap
function to specify the map space region (address modifer) of VME address
space. See the VMEbus Specifications for information on values to use as
the address modifier. If the controller does not support specified address
mode, the imap call will fail (see table in the next section).

This maps A24 non-privileged data access mode:

prt = imap (id, (I _MAP AM | 0x39), 0x20, 0x4, 0);
This maps A32 non-privileged data access mode:

prt = imap (id, (I _MAP AM | 0x09), 0x20, 0x40, 0);

This table lists VME access modes supported on Hewlett-Packard
controllers.

Chapter 6 149

Reading and Writing
to Device Registers

Unmapping Memory
Space

VME Interrupts

Example: VME
Interrupts (C)

Using SICL with VXI
Miscellaneous VXI Interface Programming

VME Mapping Support

A16 A24 A32
D08 D16 D32 D08 D16 D32 D08 D16 D32
Supervisory data X X X X X X X X X

Non-Privileged data

After you have mapped the memory space, use the SICL i?peek and
i?poke functions to communicate with the VME devices. With these
functions, you need to know the register to communicate with and the
register’s offset.

See the instrument’s user’s manual for descriptions of registers and register
locations. See Chapter 9 - SICL Language Reference for a description of the
i?peek and i?poke functions. This is an example using iwpeek:

id = iopen (“vxi”);
addr = imap (id, (I _MAP AM | 0x39), 0x20, 0x4, 0);
reg data = iwpeek ((unsigned short *) (addr + 0x00));

Make sure you use the iunmap function to unmap the memory space when
it is no longer needed. This frees the mapping hardware so it can be used by
other processes.

There are seven VME interrupt lines that can be used. By default, VXI
processing of the IACK value will be used. However, if you configure VME
IRQ lines and VME Only, no VXI processing of the IACK value will be done.
That is, the IACK value will be passed to a SICL interrupt handler directly.
See isetintr in Chapter 9 - SICL Language Reference for information on
the VME interrupts.

This ANSI C example program opens a VXI interface session and sets up
an interrupt handler. When the I_INTR VME_IRQ1 interrupt occurs, the
function defined in the interrupt handler will be called. The program then
writes to the registers, causing the I_INTR VME IRQ1 interrupt to occur.

You must edit this program to specify the starting address and register offset
of your specific VME device. This example program also requires the VME
device to be using I_INTR VME_IRQ1 and the controller to be the handler
for the VME IRQ1.

150 Chapter 6

Using SICL with VXI
Miscellaneous VXI Interface Programming

/* vmedev.c

This example program opens a VXI interface session and sets
up an interrupt handler. When the specified interrupt occurs,
the procedure defined in the interrupt handler is called. You
must edit this program to specify starting address and
register offset for your specific VME device. */

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

#define ADDR “vxi”

void handler (INST id, long reason, long secval) {
printf (“Got the interrupt\n”);

void main ()

{
unsigned short reg;
char *base addr;
INST id;

/* install error handler */
ionerror (I ERROR EXIT);

/* open an interface communications session */
id = iopen (ADDR) ;
itimeout (id, 10000);

/* install interrupt handler */
ionintr (id, handler);
isetintr (id, I INTR VME IRQ1, 1);

/* turn interrupt notification off so that interrupts are
not recognized before the iwaithdlr function is called*/
iintroff ();

/* map into user memory space */
base addr = imap (id, I MAP A24, 0x40, 1, NULL);

/* read a register */
reg = iwpeek ((unsigned short *) (base addr + 0x00));

Chapter 6 151

Using SICL with VXI
Miscellaneous VXI Interface Programming

/* print results */
printf (“"The registers contents were as follows:
0x%$4X\n”, reg);

/* write to a register causing interrupt */
iwpoke ((unsigned short *) (base addr + 0x00), reg);

/* wait for interrupt */
iwaithdlr (10000);

/* turn interrupt notification on */
iintron ();

/* unmap memory space */
iunmap (id, base addr, I MAP A24, 0x40, 1);

/* close session */
iclose (id);

VXI Backplane Memory I/O Performance

SICL supports two different memory 1/0 mechanisms for accessing memory
on the VXI backplane.

Single location peek/ imap, iunmap, ibpeek, iwpeek,
poke and direct ilpeek, ibpoke, iwpoke, ilpoke,
memory dereference value = *pointer, *pointer = value

Block memory access imap, iunmap, ibblockcopy,
iwblockcopy, ilblockcopy,
ibpushfifo, iwpushfifo, ilpushfifo
ibpopfifo, iwpopfifo, ilpopfifo

Using Single Single location peek/poke or direct memory dereference is the most efficient

Location Peek/Poke in programs that require repeated access to different addresses. On many
platforms, the peek/poke operations are actually macros which expand to
direct memory dereferencing.

An exception is Windows platforms, where ipeek/ipoke are implemented
as functions since (under certain conditions) the compiler will attempt to
optimize a direct dereference and cause a VXI memory access of the wrong
size.

152 Chapter 6

Using Block Memory
Access

Example: VXI
Memory 1/0 (C)

Using SICL with VXI
Miscellaneous VXI Interface Programming

For example, when masking the results of a 16-bit read in an expression:
data = iwpeek(addr) & Oxff;

the compiler will simplify this to an 8-bit read of the contents of the addr

pointer. This would cause an error when attempting to read memory on a
VXI card that did not support 8-bit access. When iwpeek is implemented
as a function, the correct size memory access is guaranteed.

The block memory access functions provide the highest possible
performance for transferring large blocks of data to or from the VXI
backplane. Although these calls have higher initial overhead than the
ipeek/ipoke calls, they are optimized on each platform to provide the
fastest possible transfer rate for large blocks of data.

These routines may use DMA, which is not available with ipeek/ipoke.
For small blocks, the overhead associated with the block memory access
functions may actually make these calls longer than an equivalent loop of
ipeek/ipoke calls.

The block size at which the block functions become faster depends on the
particular platform and processor speed.

An example follows that demonstrates the use of simple and block memory
I/O methods in SICL.

/*
siclmem.c
This example program demonstrates the use of
simple and block memory I/O methods in SICL. */

#include <sicl.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI INST “vxi,24”

void main () {
INST id;
unsigned short *memPtrl6;
unsigned short id reg;
unsigned short devtype reg;
unsigned short memArray[2];
int err;

Chapter 6 153

Using SICL with VXI
Miscellaneous VXI Interface Programming

/*

/*

/* Open a session to the instrument */
id = iopen (VXI INST);

Simple memory I/0

= iwpeek ()
= direct memory dereference

On many platforms, the ipeek/ipoke operations are actually
macros which expand to direct memory dereferencing. The
exception is on Microsoft Windows platforms where ipeek/
ipoke are implemented as functions.

This is necessary because under certain conditions, the
compiler will attempt to optimize a direct dereference and
cause a VXI memory access of the wrong size. For example,
when masking the results of a 16-bit read in a expression:

data = iwpeek(addr) & Oxff;
the compiler will simplify this to an 8-bit read of the
contents of the addr pointer. This would cause an error when

attempting to read memory on a VXI card that did not support
8-bit access. */

Map into memory space */

memPtrl6 = (unsigned short *)imap(id, I MAP VXIDEV, 0, 1, 0);

/*

Read instrument id register contents */

id reg = iwpeek (memPtrl6);

/*

Read device type register contents */

id reg = iwpeek (memPtrl6+1);

/* Print results */

printf (M iwpeek: ID Register = 0x%4X\n”, id regqg);

printf (™ iwpeek: Device Type Register = 0x%4X\n”,
devtype regq);

/* Use direct memory dereferencing */

id reg = *memPtrl6;

devtype reg = * (memPtrl6+l);

154 Chapter 6

Using SICL with VXI
Miscellaneous VXI Interface Programming

/* Print results */

printf (“dereference: ID Register = 0x%4X\n”, id regqg);
printf (“dereference: Device Type Register = 0x%4X\n”,

devtype req);

= iwblockcopy

= iwpushfifo

= iwpopfifo

These commands offer the best performance for reading and
writing large data blocks on the VXI backplane. For this

example, we are only moving 2 words at a time. Normally,

these functions would be used to move much larger blocks

of data. */

/* Read the instrument id register and device type
register into an array. */

err = iwblockcopy(id, memPtrl6, memArray, 2, 0);

/* Print results */

printf (™ iwblockcopy: ID Register = 0x%4X\n”, memArray[0]);
printf (" iwblockcopy: Device Type Register = 0x%4X\n”,
memArray[1l]);

/* ============ Demonstrate popfifo */

/* Do a popfifo of the Id Register */
err = iwpopfifo(id, memPtrl6, memArray, 2, 0);

/* Print results */
printf (" iwpopfifo: 1 ID Register = 0x%4X\n”, memArray[0]);
printf (™ iwpopfifo: 2 ID Register = 0x%4X\n”, memArray[l]);

/* ================= Cleanup and Exit ============== */

/* Unmap memory space */
iunmap (id, (char *)memPtrlé, I MAP VXIDEV, 0, 1);

/* Close instrument session */
iclose (id) ;

}

Chapter 6 155

Example: VXI
Interrupt Actions (C)

Using SICL with VXI
Miscellaneous VXI Interface Programming

Using VXI-Specific Interrupts

See the isetintr function in Chapter 9 - SICL Language Reference
for a list of VXI-specific interrupts.

This pseudo-code describes the actions performed by SICL when a VME
interrupt arrives and/or a VXI signal register write occurs.

VME Interrupt arrives:
get iack value
send I INTR VME IRQ?
is VME IRQ line configured VME only
if yes then
exit
do lower 8 bits match logical address of one of our servants?
if yes then
/* iack is from one of our servants */
call servant signal processing(iack)
else
/* iack is from non-servant VXI or VME device*/
send I INTR VXI VME interrupt to interface sessions

Signal Register Write occurs:
get value written to signal register
send I INTR ANY SIG
do lower 8 bits match logical address of one of our servants?
if yes then
/* Signal is from one of our servants */
call Servant signal processing(value)
else
/* Stray signal */
send I INTR VXI UKNSIG to interface sessions
servant signal processing (signal value)
/* Value is form one of our servants */
is signal value a response signal?
If yes then
process response signal
exit
/* Signal is an event signal */
is signal an RT or RF event?
if yes then
/* A request TRUE or request FALSE arrived */
process request TRUE or request FALSE event
generate SRQ if appropriate
exit

156 Chapter 6

Example:
Processing VME
Interrupts (C)

Using SICL with VXI
Miscellaneous VXI Interface Programming

is signal an undefined command event?
if yes then

/* Undefined command event */

process an undefined command event

exit
/* Signal is a user-defined or undefined event */
send I _INTR VXI SIGNAL to device sessions for this device
exit

/* vmeintr.c
This example uses SICL to cause a VME interrupt from
an E1361 register-based relay card at logical address 136.*/

#include <sicl.h>
static void vmeint (INST, unsigned short);

static void int setup (INST, unsigned long);
static void int hndlr (INST, long, long);

int intr = 0;

main () {
int o; INST id intfl;
unsigned long mask = 1;
ionerror (I ERROR EXIT);
iintroff ();
id intfl = iopen (“vxi,136");

int setup (id _intfl, mask);

vmeint (id intfl, 136);

/* wait for SRQ or interrupt condition */
iwaithdlr (0);

iintron ();
iclose (id intfl);

}

static void int setup (INST id, unsigned long mask) {
ionintr(id, int hndlr);
isetintr(id, I INTR VXI SIGNAL, mask);

}

static void vmeint (INST id, unsigned short laddr) {
int reg;
char *al6 ptr = 0;

reg = 8;
ale ptr = imap (id, I_MAP Al6, O, 1, 0);

Chapter 6 157

Using SICL with VXI
Miscellaneous VXI Interface Programming

/* Cause uhf mux to interrupt: */
iwpoke ((unsigned short *) (al6_ptr + 0xc000 + laddr *
64 + req), 0x0) ;
}
static void int hndlr (INST id, long reason, long sec) {
printf (“VME interrupt: reason: 0x%x, sec: 0x%$x\n”,
reason, sec) ;
intr = 1;

158 Chapter 6

Using SICL with RS-232

159

Using SICL with RS-232

This chapter shows how to open a communications session and
communicate with a device via an RS-232 connection. The example
programs in this chapter are also provided in the C\SAMPLES\MISC

(for C/C++) and VB\SAMPLES\MISC (for Visual Basic). The chapter includes:

B [ntroduction to RS-232 Interfaces
B Using RS-232 Device Sessions
W Using RS-232 Interface Sessions

160 Chapter 7

Typical RS-232
Interface

Using SICL with RS-232
Introduction to RS-232 Interfaces

Introduction to RS-232 Interfaces

This section provides an introduction to using SICL with the RS-232
interface, including:

B ASRL (RS-232) Interfaces Overview
W Selecting an RS-232 Communications Session
B RS-232 SICL Functions

ASRL (RS-232) Interface Overview

This section provides an overview of RS-232 interfaces, including typical
hardware configuration, using 10 Config, and example configuration using
SICL.

As shown in the following figure, a typical ASRL (RS-232) interface consists
of a Windows PC with one or more RS-232 COM Ports. Each COM port can
be connected to one, and only one, Serial instrument via an RS-232 cable.

a)

ASRL Interface (RS-232 COM Ports)

Windows PC RS-232 Cable Serial
Instruments

RS-232 COM Port 1

RS-232 COM Port 2

Chapter 7 161

Configuring RS-232

Interfaces

Example:

Configuring RS-232

Interface

Using SICL with RS-232
Introduction to RS-232 Interfaces

An 10 interface can be defined as both a hardware interface and as a
software interface. The purpose of the IO Config utility is to associate a
unique interface name with a hardware interface.

The IO Libraries use an Interface Name or Logical Unit Number to identify an
interface. This information is passed in the parameter string of the iopen
function call in a SICL program. 10 Config assigns an Interface Name and
Logical Unit Number to the interface hardware, as well as other necessary
configuration values for an interface when the interface is configured. See
the Agilent 10 Libraries Installation and Configuration Guide for Windows
for information on 10 Config.

The ASRL (RS-232) interface system in the following figure consists of a
Windows PC with two RS-232 COM ports, each of which is connected to a
single Serial instrument via RS-232 cables. The 10 Config utility has been
used to assign COM Port 1 a SICL name of “COM1” and to assign COM
Port 2 a SICL name of “COM2”. Since unique names have been assigned
by 10 Config, you can now use the SICL iopen command to open the IO

~

Interface SICL Names Windows PC RS-232 Cable Serial
Instruments
SICL Name
"COM1" RS-232 COM Port 1
"COMm2" RS-232 COM Port 2

paths to the GPIB instruments as shown in the figure.

ASRL Interface (RS-232 COM Ports)

-

SICL Addressing

iopen ("COM1,488") Open IO path to Serial instrument using COM Port 1
iopen ("COM2,488") Open IO path to Serial instrument using COM Port 2

/

162 Chapter 7

Device Sessons

Interface Sessions

Using SICL with RS-232
Introduction to RS-232 Interfaces

RS-232 Communications Sessions

RS-232 is a serial interface that is widely used for instrumentation. Although
RS-232 is slow in comparison to GPIB or VXI, its low cost makes it an
attractive solution in many situations. Because SICL for Windows uses

the RS-232 facilities built into the Windows operating system, controlling
RS-232 instruments is easy.

After you have configured your system for RS-232 communications, you can
start programming using the SICL functions. Using SICL to communicate
with a device via RS-232 is similar to using SICL to communicate via the
GPIB interface. To use SICL, you must first determine the type of
communications session required. An RS-232 communications session

can be either a device session or an interface session. Commander sessions
are not supported on RS-232.

For direct access to a device, communication is with a device session.
An RS-232 device session should be used when sending commands and
receiving data from an instrument.

SICL also allows interface-specific actions, such as setting device
addresses or other interface-specific characteristics. To do this, you
communicate with an interface session. Setting interface characteristics
(such as the baud rate) must be done with an interface session.

With RS-232, only one device is connected to the interface, so it may seem
like extra work to have both device sessions and interface sessions.
However, structuring the code so that interface-specific actions are isolated
from actions on the device itself makes programs easier to maintain. This is
especially important if you want to use a program with a similar device on a
different interface, such as GPIB.

Chapter 7 163

Using SICL with RS-232

Introduction to RS-232 Interfaces

RS-232 SICL Functions

Function Name

Action

iserialctrl Sets the following characteristics of the RS-232
interface:
Request Characteristic Settings
I_SERIAL BAUD Data rate 2400, 9600, etc.
I_SERIAL PARITY Parity I_SERIAL_PAR NONE

I_SERIAL_PAR_IGNORE
I_SERIAL_ PAR_EVEN
I_SERIAL_PAR_ODD
I_SERIAL_PAR MARK
I_SERIAL_PAR SPACE

I_SERIAL_ STOP

Stop bits / frame

I_SERIAL STOP_ 1
I_SERIAL STOP_2

I_SERIAL WIDTH

Data bits / frame

I_SERIAL_CHAR 5
I_SERIAL CHAR 6
I_SERIAL_CHAR 7
I_SERIAL CHAR 8

I_SERIAL READ BUFSZ | Receive buffer size Number of bytes

I_SERIAL DUPLEX Data traffic I_SERIAL DUPLEX HALF
I_SERIAL DUPLEX FULL

I_SERIAL FLOW_CTRL Flow control I_SERIAL FLOW_NONE

I_SERIAL_FLOW_XON
I_SERIAL_FLOW_RTS_CTS
I_SERIAL_FLOW_DTR DSR

I_SERIAL READ EOI

EOI indicator for reads

I_SERIAL EOI_NONE
I_SERIAL_EOI_BITS8
I_SERIAL_EOI_CHAR|(n)

I_SERIAL_ WRITE_ EOI

EOI indicator for writes

I_SERIAL_EOI_NONE
I_SERIAL EOI_BITS

I_SERIAL RESET

Interface state

(none)

164

Chapter 7

Using SICL with RS-232

Introduction to RS-232 Interfaces

Function Name

Action

iserialstat Gets the following information about the RS-232
interface:
Request Characteristic Value
I_SERIAL BAUD Data rate 2400, 9600, etc.
I_SERIAL PARITY Parity I_SERIAL_PAR *

I_SERIAL_ STOP

Stop bits / frame

I_SERIAL STOP_*

I_SERIAL WIDTH

Data bits / frame

I_SERIAL CHAR *

I_SERIAL DUPLEX

Data traffic

I_SERIAL DUPLEX *

I_SERIAL_MSL

Modem status lines

I_SERIAL_DCD
I_SERIAL_DSR
I_SERIAL_CTS
I_SERIAL_RI
I_SERIAL_TERI
I_SERIAL_D_DCD
I_SERIAL_D DSR
I_SERIAL_D_CTS

I_SERIAL STAT

Misc. status

I_SERIAL_DAV
I_SERIAL_TEMT
I_SERIAL_PARITY
I_SERIAL_OVERFLOW
I_SERIAL_FRAMING
I_SERIAL_BREAK

I_SERIAL READ BUFSZ

Receive buffer size

Number of bytes

I_SERIAL READ DAV

Data available

Number of bytes

I_SERIAL FLOW_CTRL

Flow control

I_SERIAL FLOW_*

I_SERIAL READ_ EOI

EOI indicator for reads

I_SERIAL_EOI*

I_SERIAL WRITE_ EOI

EOI indicator for writes

I_SERIAL_EOI*

Chapter 7

165

Using SICL with RS-232
Introduction to RS-232 Interfaces

Function Name Action

iserialmclctrl Sets or Clears the modem control lines. Modem control
lines are either I_SERIAL RTS or I_SERIAL DTR.

iserialmclstat Gets the current state of the modem control lines.

iserialbreak Sends a break to the instrument. Break time is 10
character times, with a minimum time of 50 milliseconds
and a maximum time of 250 milliseconds.

166 Chapter 7

Using SICL with RS-232
Using RS-232 Device Sessions

Using RS-232 Device Sessions

An RS-232 device session allows direct access to a device, regardless of
the type of interface to which the device is connected. The specifics of the
interface are hidden from the user.

Addressing RS-232 Devices

To create a device session, specify the interface logical unit or symbolic
name, followed by a device logical address of 488. The device address of
488 tells SICL that communication is with a device that uses the
IEEE-488.2 standard command structure.

For other interfaces (such as GPIB), SICL supports the concept of primary
and secondary addresses. However, for RS-232, the only primary address
supported is 488. SICL does not support secondary addressing on RS-232
interfaces.

NOTE

If a device does not “speak” IEEE-488.2, you can still use SICL to
communicate with the device. However, some SICL functions that work
only with device sessions may not operate correctly. See “SICL Function
Support for RS-232 Device Sessions” for details.

The interface logical unit and symbolic name are defined by running the

IO Config utility. To open 10 Config, click the Agilent IO Libraries Control and
then click Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on 10 Config. Some
example addresses for RS-232 device sessions follow.

COM1, 488
serial, 488

Examples of opening a device session with an RS-232 device follow.
C example:

INST dmm;
dmm = iopen (“coml,488”);

Visual Basic example:

Dim dmm As Integer
dmm = iopen (“coml,488”

Chapter 7 167

Using SICL with RS-232
Using RS-232 Device Sessions

SICL Functions for RS-232 Device Sessions

This section describes how some SICL functions are implemented for
RS-232 device sessions. There are specific device session interrupts that
can be used. See isetintr in Chapter 9 - SICL Language Reference
for information on RS-232 device session interrupts.

Function

Description

iprintf,
iscanf,
ipromptf

SICL’s formatted I/O routines depend on the concept of an
EOI indicator. Since RS-232 does not define an EOI indicator,
SICL uses the newline character (\n) by default.

You cannot change this with a device session. However, you
can use the iserialectrl function with an interface session.
See “ SICL Function Support for RS-232 Interface Sessions”
in this chapter for details.

ireadstb

Sends the IEEE 488.2 command *STB? to the instrument,
followed by the newline character (\n). It then reads the ASCII
response string and converts it to an 8-bit integer. This will
work only if the instrument understands this command.

itrigger

Sends the IEEE 488.2 command *TRG to the instrument,
followed by the newline character (\n). This will work only
if the instrument understands this command.

iclear

Sends a break, aborts any pending writes, discards any data
in the receive buffer, resets any flow control states (such as
XON/XOFF), and resets any error conditions. To reset the
interface without sending a break, use: iserialctrl

(id, I_SERIAL RESET, 0)

ionsrq

Installs a service request handler for this session. Service
requests are supported for both device sessions and interface
sessions. See “SICL Function Support for RS-232 Interface
Sessions” in this chapter for details.

168

Chapter 7

Example: RS-232
Device Session (C)

Using SICL with RS-232
Using RS-232 Device Sessions

Example Device Session Programs

This section contains two example programs for RS-232 interface device
session programming.

This example program takes a measurement from a DVM using a SICL
device session. This example program was tested with a 34401A Digital
Voltmeter. When you run the program with a serial connection to the
34401A, be sure that DTR/DSR flow control is set for the serial port.
Otherwise, the program will appear not to work.

/* ser dev.c
This example program takes a measurement from a DVM
using a SICL device session.

*/

#include <sicl.h>

#include <stdio.h>

#include <stdlib.h>

#if !defined (WIN32)
#define LOADDS _ loadds
felse
#define LOADDS
#endif

void SICLCALLBACK LOADDS error handler (INST id, int
error) {

printf (“Error: %s\n”, igeterrstr (error));
exit (1);
}

main ()

{
INST dvm;
double res;

#if defined(BORLANDC) && !defined(WIN32
_InitEasyWin(); /* required for Borland EasyWin
programs */
#endif

/* Log message and terminate on error */
ionerror (error handler);

Chapter 7 169

Example: RS-232
Device Session
(Visual Basic)

Using SICL with RS-232
Using RS-232 Device Sessions

/* Open the multimeter session */
dvm = iopen (“COM1,488");
itimeout (dvm, 10000);

/* Prepare the multimeter for measurements */
iprintf (dvm,” *RST\n”) ;
iprintf (dvm,” SYST:REM\n”) ;

/* Take a measurement */
iprintf (dvm,”MEAS:VOLT:DC?\n”) ;

/* Read the results */
iscanf (dvm,”%1f”, &res);

/* Print the results */
printf (“Result is %f\n”,res);

/* Close the voltmeter session */
iclose (dvm);

/* This call is a no-op for WIN32 programs */
_siclcleanup();

return 0;

This example program takes a measurement from a DVM using a SICL
device session. This example program was tested with a 34401A Digital
Voltmeter. When you run the program with a serial connection to the
34401A, be sure that DTR/DSR flow control is set for the serial port.
Otherwise, the program will appear not to work.

170 Chapter 7

Using SICL with RS-232
Using RS-232 Device Sessions

Option Explicit

rrryrryryryryyryryryrryrvyryrrrryrryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrruooug

' ser dev.bas
' This example program takes a measurement from a
' DVM using a SICL RS-232 device session.

rryrryryryryryryryrryryvryrrrryrryrryrrrrrrrrrrrrrrrrrrrrrrrrrrrruoou

Sub Main ()
Dim dvm As Integer
Dim res As Double
Dim argcount As Integer

' Open the multimeter session

' "COM1" is the SICL Interface name as defined in:

' Start | Programs | Agilent IO Libraries | IO Config
' Change this to the SICL Name you have defined

dvm = iopen ("COM1,488")

' Set timeout to 10 sec
Call itimeout (dvm, 10000)

' Prepare the multimeter for measurements
argcount = ivprintf (dvm, "*RST" + Chr$(10), 0&)

argcount = ivprintf (dvm, "SYST:REM" + Chr$(10), 0&)

' Take a measurement
argcount = ivprintf (dvm, "MEAS:VOLT:DC?" + Chr$(10))

' Read the results
argcount = ivscanf (dvm, "$1f", res)

' Print the results
MsgBox "Result is " + Format(res), vbExclamation

' Close the multimeter session
Call iclose (dvm)

' Tell SICL to cleanup for this task
Call siclcleanup

End Sub

Chapter 7 171

Using SICL with RS-232
Using RS-232 Interface Sessions

Using RS-232 Interface Sessions

RS-232 interface sessions can be used to get or set the characteristics of the
RS-232 interface. Examples of some of these characteristics are baud rate,
parity, and flow control. There are specific interface session interrupts that
can be used. See isetintr in Chapter 9 - SICL Language Reference

for information on RS-232 interface session interrupts.

Addressing RS-232 Interfaces

To create an interface session on RS-232, specify the interface logical unit or
symbolic name in the addr parameter of the iopen function. The interface
logical unit and symbolic name are defined by running the IO Config utility.
To open 10 Config, click the Agilent 10 Libraries Control and then click

Run IO Config. See the Agilent IO Libraries Installation and Configuration
Guide for Windows for information on 10 Config. Some example addresses
for RS-232 interface sessions follow.

COM1 An interface symbolic name
serial An interface symbolic name
1 An interface logical unit

These examples open an interface session with the RS-232 interface.

C example:

INST intf;
intf = iopen (“COM1”);

Visual Basic example:

Dim intf As Integer
intf = iopen (“COM1”)

172 Chapter 7

Using SICL with RS-232
Using RS-232 Interface Sessions

SICL Functions for RS-232 Interface Sessions

This section describes how some SICL functions are implemented for
RS-232 interface sessions.

Functions Description

iwrite, iread All I/O functions (non-formatted and formatted) work the same as for device
sessions. However, it is recommended that all I/O be performed with device
sessions to make your programs easier to maintain.

ixtrig Provides a method of triggering using either the DTR or RTS modem status
line. This function clears the specified modem status line, waits 10
milliseconds, then sets it again. Specifying I_TRIG_STD is the same as
specifying I_TRIG_SERIAL DTR.

itrigger Pulses the DTR modem control line for 10 milliseconds.

iclear Sends a break, aborts any pending writes, discards any data in the receive
buffer, resets any flow control states (such as XON/XOFF), and resets any error
conditions. To reset the interface without sending a break, use: iserialctrl

(id, I_SERIAL RESET, 0)

ionsrq] Installs a service request handler for this session. The concept of service
request (SRQ) originates from GPIB.
On a GPIB interface, a device can request service from the controller by
asserting a line on the interface bus.

RS-232 does not have a specific line assigned as a service request line.
However, you can assign one of the modem status lines (RI, DCD, CTS, or
DSR) as the service request line by running the 10 Config utility.

Any transition on the designated service request line will cause an SRQ
handler in your program to be called. (Be sure not to set the SRQ line to CTS or
DSR if you are also using that line for hardware flow control.)

Service requests are supported for both device sessions and interface
sessions. When the designated SRQ line changes state, the RS-232 driver
calls all SRQ handlers installed by either device sessions or interface sessions.

Chapter 7 173

Using SICL with RS-232
Using RS-232 Interface Sessions

Functions Description

iserialctrl Sets the characteristics of the serial interface. The following requests are
clarified:

B I SERIAL_DUPLEX: The duplex setting determines whether data can
be sent and received simultaneously. Setting full duplex allows
simultaneous send and receive data traffic. Setting half duplex (the
default) will cause reads and writes to be interleaved, so that data is
flowing in only one direction at any given time. (The exception to this is
if XON/XOFF flow control is used.)

B I SERIAL_READ_ BUFSZ: The default read buffer size is 2048 bytes.

B I SERIAL_RESET Performs the same function as the iclear function
on an interface session, except that a break is not sent.

iserialstat Gets the characteristics of the serial interface. The following requests are
clarified:

B 1 SERIAL_MSL: Gets the state of the modem status line. Because of
the way Windows supports RS-232, the I_SERIAL_RI bit will never be
set. However, the I_SERIAL TERI bit will be set when the RI modem
status line changes “from hlgh to low.

B I SERIAL_STAT Gets the status of the transmit and receive buffers
and the errors that have occurred since the last time this request was
made. Only the error bits (I_SERIAL_PARITY,

I_SERIAL OVERFLOW, I_SERIAL FRAMING, and
I_SERIAL_BREAK) are cleared. The I_SERIAL READ DAV and
I_SERIAL_TEMT bits reflect the status of the buffers at all times.

B I SERIAL_READ_DAV: Gets the current amount of data available for
reading. This shows how much data is in Windows’ receive buffer, not
how much data is in the buffer used by the formatted input functions such
as iscanf.

iserial-mclctrl Controls the modem control lines RTS and DTR. If one of these lines is being
used for flow control, you cannot set that line with this function.

iserial-mclstat Determines the current state of the modem control lines. If one of these lines is
being used for flow control, this function may not give the correct state of that
line.

174 Chapter 7

Example: RS-232
Interface Session
(€)

Using SICL with RS-232
Using RS-232 Interface Sessions

Example Interface Sessions Programs

This section contains two example programs for RS-232 interface device
session programming.

/*ser intf.c
This program gets the current configuration of the
serial port, sets it to 9600 baud, no parity, 8 data
bits, and 1 stop bit, and prints the old configuration.
*/
#include <stdio.h>
#include <sicl.h>

main ()

{
INST intf; /* interface session id */
unsigned long baudrate, parity, databits, stopbits;
char *parity str;

#if defined(BORLANDC) && !defined(WIN32)
_InitEasyWin(); /* regd for Borland EasyWin programs */
#endif

/* Log message and exit program on error */
ionerror (I _ERROR EXIT);

/* open RS-232 interface session */
intf = iopen (“COM1”);
itimeout (intf, 10000);

/* get baud rate, parity, data bits, and stop bits */
iserialstat (intf, I SERIAL BAUD, &baudrate) ;
iserialstat (intf, I SERIAL PARITY, &parity):;
iserialstat (intf, I SERIAL WIDTH, &databits) ;
iserialstat (intf, I SERIAL STOP, &stopbits);

/* determine string to display for parity */
if (parity == I SERIAL PAR NONE) parity str = “NONE”;

else if (parity == I_SERIAL PAR ODD) parity str =
“ODD” ;

else if (parity == I SERIAL PAR EVEN) parity str =
“EVEN" ;

else if (parity == I SERIAL PAR MARK) parity str =
“MARK” ;

Chapter 7 175

Using SICL with RS-232
Using RS-232 Interface Sessions

else /*parity == I SERIAL PAR SPACE*/ parity str =
“SPACE”;

/* set to 9600,NONE, 8,1 */
iserialctrl (intf, I SERIAL BAUD, 9600) ;
iserialctrl (intf, I SERIAL PARITY,

I _SERIAL PAR NONE) ;

iserialctrl (intf, I SERIAL WIDTH, I SERIAL CHAR 8);
iserialctrl (intf, I SERIAL STOP, I SERIAL STOP 1);

/* Display previous settings */
printf (“0ld settings: %51d,%s,%1d,%1d\n”,
baudrate, parity str, databits, stopbits);

/* close port */
iclose (intf);

/* This call is a no-op for WIN32 programs. */
_siclcleanup();

return 0;

Exampb:RSQBZ Option Explicit

Interface Session trrrrrrrrrrinnriinnrii i n i nrrnprrrn i r ey
(Visual Basic) set intf.bas

This program (1) gets the current configuration of the
serial port; (2) sets it to 9600 baud, no parity, 8 data
' bits, and 1 stop bit; (3) prints the old configuration

Trryrryryryryryrvryrrrvyrrrrrrrrrrrrrrrrrrrrrrrrrrrrrvrrrrvrrvrurouny

Sub Main ()
Dim intf As Integer
Dim baudrate As Long
Dim parity As Long
Dim databits As Long
Dim stopbits As Long
Dim parity str As String
Dim msg_str As String
' open RS-232 interface session
' "COM1" is the SICL Interface name as defined in:
' Start | Programs | Agilent IO Libraries | IO Config

176 Chapter 7

Using SICL with RS-232

Using RS-232 Interface Sessions

' Change this to the SICL Name you have defined in
' IO Config

intf =

' get baud rate,
Call iserialstat (intf,
Call iserialstat
Call iserialstat
Call iserialstat (intf,

iopen ("COM1"™)
Call itimeout (intf,

10000)
parity,

intf,

(
(
(intf,
(

data bits,
I_SERIAL BAUD, baudrate)
I SERIAL PARITY, parity)
I SERIAL WIDTH, databits)
I _SERIAL STOP,

and stop bits

stopbits)

' determine string to display for parity
Select Case parity
Case I SERIAL PAR NONE

parity str = "NONE"
Case I SERIAL PAR ODD

parity str = "ODD"
Case I SERIAL PAR EVEN

parity str = "EVEN"
Case I SERIAL PAR MARK

parity str = "MARK"
Case Else

parity str = "SPACE"

End Select

' set to 9600,NONE, 8, 1

Call iserialctrl (intf,
Call iserialctrl (intf,
I _SERIAL PAR NONE)
Call iserialctrl (intf,
I SERIAL CHAR 8)

I_SERIAL BAUD,
I SERIAL PARITY,

9600)

I SERIAL WIDTH,

Call iserialctrl(intf, I SERIAL STOP, I SERIAL STOP 1)

' display previous settings

msg_str = "Old settings: " & _

MsgBox msg str,

Str$ (baudrate) & ","
parity str & "," &

Str$ (databits) & ","
Str$ (stopbits)
vbExclamation

' close port

&

&

Chapter 7

177

Using SICL with RS-232
Using RS-232 Interface Sessions

Call iclose (intf)

' Tell SICL to cleanup for this task
Call siclcleanup
End Sub

178 Chapter 7

Using SICL with LAN

179

Using SICL with LAN

This chapter shows how to open a communications session and
communicate with devices over a Local Area Network (LAN). The

example programs in this chapter are also provided in C\SAMPLES\MISC
(for C/C++) and VB\SAMPLES\MISC (for Visual Basic). The chapter includes:

LAN Interfaces Overview

Using LAN_gatewayed Sessions
Using LAN Interface Sessions

Using Locks, Threads, and Timeouts

180 Chapter 8

LAN Client/Server
Model

Using SICL with LAN
Introduction to LAN Interfaces

Introduction to LAN Interfaces

This section provides an introduction to using SICL with Local Area Network
(LAN) interfaces, including:

B AN Interfaces Overview
B Configuring LAN Client Interfaces
B Configuring LAN Server Interfaces

LAN Interfaces Overview

A LAN extends control of instrumentation beyond the limits of typical
instrument interfaces. LAN is only supported with 32-bit SICL on Windows
95, Windows 98, Windows 2000, Windows Me, and Windows NT. LAN is
only supported with 32-bit Visual Basic version 4.0 and above. Also, the
GPIO interface is not supported with SICL over LAN.

The LAN software provided with SICL allows instrumentation control over a
LAN. By using standard LAN connections, instrument control can be driven
from a computer that does not have a special interface for instrument
control. To start or stop the LAN server on a Windows 95, Windows 98,
Windows Me, Windows 2000, or Windows NT system, see the Agilent

10 Libraries Installation and Configuration Guide for Windows.

The LAN software provided with SICL uses the client/server model of
computing. Client/server computing refers to a model where an application,
the client, does not perform all the necessary tasks of the application itself.
Instead, the client makes requests of another computing device, the server,
for certain services. Examples that you may have in your workplace include
shared file servers, print servers, or database servers.

The use of LAN for instrument control also provides other advantages
associated with client/server computing, such as resource sharing by
multiple applications/people within an organization or distributed control,
where the computer running the application controlling the devices need
not be in the same room (or even the same building) as the devices.

Chapter 8 181

Using SICL with LAN
Introduction to LAN Interfaces

LAN Hardware As shown in the following figure, a LAN client computer system (a Series

Architecture 700 HP-UX workstation, a Windows 95/98/2000/Me PC, or a Windows NT
PC) makes SICL requests over the network to a LAN server (a Series 700
HP-UX workstation, a Windows 95/98/2000/Me PC, a Windows NT PC, or
an E2050 LAN/GPIB Gateway).

/ Series 700 PCs or Windows 95/98/Me/2000/NT PCs \

- B B E

,

LAN - ¢ ! !

E2050
LAN/GPIB @
Gateway

Server

—— ——
GPIB

Series 700 PCs or D N eP
Windows 95/98/Me/ GPIB bus
(or other)

2000/NT PCs

] L L

GPIB
Instruments

GPIB LAN Instruments
Instrument (VXI-11.2 GPIB Emulation
or

K VXI-11.3 LAN Instruments) J

The LAN server is connected to the instrumentation or devices that must be
controlled. Once the LAN server has completed the requested operation on
the instrument or device, the LAN server sends a reply to the LAN client.
This reply contains any requested data and status information that indicates
whether the operation was successful.

182 Chapter 8

LAN Software
Architecture

LAN Networking

Protocols

Using SICL with LAN
Introduction to LAN Interfaces

The LAN server acts as a gateway between the LAN that the client system
supports, and the instrument-specific interface that the device supports. Due
to the LAN server’s gateway functionality, we refer to devices or interfaces
that are accessed via one of these LAN-to-instrument_interface gateways as
being a LAN-gatewayed device or a LAN-gatewayed interface.

As shown in the following figure, the client system contains the LAN client
software and the LAN software (TCP/IP) needed to access the server
(gateway). The gateway contains the LAN server software, LAN (TCP/IP)
software, and the instrument driver software needed to communicate with
the client and to control the instruments or devices connected to the
gateway.

~

-

Client SICL System Server (Gateway) Instrument
Application LAN Server Instrument
Firmware
SICL TCP
Instrument

LAN Client IP Driver

TCP LAN Interface

IP
LAN Interface
GPIB bus (or other)

/

The LAN software is built on top of standard LAN networking protocols.
There are two LAN networking protocols provided with the Agilent IO
Libraries software. You can use one or both of these protocols when
configuring your systems (via Agilent 10 Libraries configuration) to use
SICL over LAN.

B SICL-LAN Protocol is a networking protocol developed by Agilent
Technologies. This LAN networking protocol is the default choice
in the Agilent 10 Libraries configuration when configuring the LAN
client. The SICL LAN protocol on HP-UX 10.20, Windows 95/98/Me/
2000/NT supports SICL operations over LAN to GPIB interfaces.

Chapter 8 183

Using SICL with LAN
Introduction to LAN Interfaces

B VXI-11 (TCP/IP Instrument Protocol) is a networking protocol
developed by the VXIbus Consortium based on the SICL LAN
Protocol that permits interoperability of LAN software from different
vendors who meet the VXlbus Consortium standards.

When using either of these networking protocols, the LAN software uses the
TCP/IP protocol suite to pass messages between the LAN client and the
LAN server. The server accepts device I/O requests over the network from
the client and then proceeds to execute those 1/0 requests on a local
interface (GPIB, etc.).

By default, the LAN Client supports both protocols by automatically
detecting the protocol the server is using. When a SICL iopen call is
performed, the LAN Client driver first tries to connect using the SICL-LAN
protocol. If that fails, the driver will try to connect using the VXI-11 protocol.

If you want to control the protocol used, you can configure more than one
LAN Client interface and set each interface to a different protocol. The
protocol used will then depend on the interface you are connecting through.
Thus, you can have more than one SICL-LAN and/or VXI-11 interfaces
configured for your system.

In SICL, the programmer can override the configuration settings by
specifying the protocol in the iopen string. Some examples are:

B iopen("lan[machineName] :hpib7,1") will use the configured
default protocol. If AUTO is configured, SICL-LAN protocol will be
attempted. If that is not supported, VXI-11 protocol will be used.

B iopen("lan;auto[machineName]:hpib7,1") will
automatically select the protocol (SICL-LAN if available and VXI-11
otherwise.)

B iopen("lan;sicl-lan[machineName] :hpib7,1") will use
SICL-LAN protocol.

B iopen("lan;vxi-1ll[machineName] :hpib7,1") will use
VXI-11 protocol.

The LAN Client also supports TCP/IP socket reads and writes. To open a
socket session, use iopen ("lan,socketNbr[machineName]"). For example,
iopen("lan,7777[machineName]") will open a socket connection for socket
number 7777 on 'machineName'.

184 Chapter 8

LAN Clients and
Threads

LAN Servers

SICL LAN
Configuration and
Performance

Using SICL with LAN
Introduction to LAN Interfaces

When you have configured VISA LAN Client interfaces, you can then use
the interface name specified during configuration in an iopen call of your
program. However, the LAN server does not support simultaneous
connections from LAN clients using the SICL-LAN Protocol and from

LAN clients using VXI-11 (TCP/IP Instrument Protocol).

There are three LAN servers that can be used with SICL: the E2050
LAN/GPIB Gateway, an HP Series 700 computer running HP-UX, or a PC
running Windows 95/98/Me/2000/NT. To use this capability, the LAN server
must have a local GPIB interface configured for I/O.

You can use multi-threaded designs (where SICL calls are made from
multiple threads) in WIN32 SICL applications over LAN. However, only one
thread is permitted to access the LAN driver at a time. This sequential
handling of individual threads by the LAN driver prevents multiple threads
from colliding or overwriting one another. Requests are handled sequentially
even if they are intended for different LAN servers.

Use multiple processes to process concurrent threads simultaneously with
SICL over LAN. For more information on using threads in SICL applications,
see Chapter 3 - Programming with SICL. Also, see “Using Locks and
Threads over LAN” in this chapter for information on using locks in multi-
threaded applications.

SICL includes software required to allow a Windows 95/98/Me/2000/NT PC
to act as a LAN-to-instrument_interface gateway. To use this capability, the
PC must have a local interface configured for I1/0. The supported interfaces
are GPIB and RS-232 with the SICL-LAN Protocol, and GPIB with the
VXI-11 Protocol. The LAN server does not support VXI operations with
either protocol.

Timing of operations performed remotely over a network will be different
from timing of operations performed locally. The extent of the timing
difference will, in part, depend on the bandwidth of, and the traffic on, the
network being used.

As with other client/server applications on a LAN, when deploying an
application that uses SICL over LAN, consideration must be given to the
performance and configuration of the network to which the client and server
will be attached. If the network to be used is not a dedicated LAN or
otherwise isolated via a bridge or other network device, current use of the
LAN must be considered.

Chapter 8 185

SICL LAN Functions

Using 10 Config

Using SICL with LAN
Introduction to LAN Interfaces

Depending on the amount of data to be transferred over the LAN via the
SICL application, performance problems could be experienced by the SICL
application or other network users if sufficient bandwidth is not available.
This is not unique to SICL over LAN, but is a general design consideration
when deploying any client/server application.

If you have questions concerning the ability of your network to handle

SICL traffic, consult with your network administrator or network equipment
providers. If you are connecting to a VXI-11 device, you can configure a VXI-
11 interface (rather than AUTO) in 10 Config and connect through it to
achieve slightly better iopen performance.

If an attempt is made to iopen a session on a LAN host that is turned off or
not connected to the network, it may take up to several minutes for the
iopen to return a failure. This delay is not affected by any of the timeout
parameters that can be configured in SICL or by the IO Config utility.

This table summarizes the SICL functions for the LAN interface.

Function Name Action
ilantimeout Sets LAN timeout value
ilangettimeout Returns LAN timeout value
igetgatewaytype Indicates whether the session is via a LAN gateway

Configuring LAN Client Interfaces

An 10 interface can be defined as both a hardware interface and as a
software interface. The purpose of the IO Config utility is to associate a
unique interface name with a hardware interface.

The 10 Libraries use an Interface Name or Logical Unit Number to identify an
interface. This information is passed in the parameter string of the viOpen
function call in a VISA program or in the 1open function call in a SICL
program. IO Config assigns an Interface Name and Logical Unit Number to
the interface hardware, as well as other necessary configuration values for
an interface when the interface is configured. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for details on 10 Config.

186 Chapter 8

Using SICL with LAN
Introduction to LAN Interfaces

Example: The LAN Client interface system in the following figure consists of a
Configuring LAN Windows PC with a LAN card, an E2050 LAN/GPIB gateway, and two
Client (Gateway) GPIB instruments. For this system, the IO Config utility has been used to
Interface assign the LAN card a SICL name of “lan”.

With this name assigned to the interface, SICL addressing is as shown in the
figure. Since a unique name has been assigned by 10 Config, you can now
use the iopen command to open the I/O paths to the GPIB instruments as
shown in the figure.

4 N

LAN Client (Gateway)

Interface SICL Names Windows PC LAN/GPIB Gateway GPIB Instruments

machine1
hpib-name = hpib

SICL Name
5

“lan" LAN Card

E2050 |

v LAN GPIB Cable

SICL Addressing (Using LAN Client)

iopen ("lan [machine1]:hpib,5") Open IO path to GPIB instrument at address 5
Qpen ("lan [machine1]:hpib,3") Open IO path to GPIB instrument at address 3 /

Chapter 8 187

Example:
Configuring LAN
Client (LAN)
Interface

Using SICL with LAN
Introduction to LAN Interfaces

The LAN Client interface system in the following figure consists of a
Windows PC with a LAN card and three LAN instruments. Instrument1 and
instrument2 are VXI-11.2 (GPIB Emulation) instruments and instrument3 is
a VXI-11.3 LAN instrument.

For this system, the IO Config utility has been used to assign the LAN card
a SICL name of “lan”. For the addressing examples, instrument1 has been

addressed by its machine name, instrument 2 has been addressed by its IP
address, and instrument3 by its LAN name (inst0).

Since unique names have been assigned by 10 Config, you can now use the
iopen command to open the I/O paths to the GPIB instruments as shown in
the figure.

/

"lan"

Interface SICL Names Windows PC LAN LAN Instruments

SICL Name

~

LAN Client (LAN)

A instrument1 — machine name

5 VXI-11.2
GPIB Emulation

gpib0,5

1.2.3.4 —» |P address

3 VXI-11.2
GPIB Emulation
gpib0,3
LAN Card
instrument3
VXI-11.3
LAN instrument
v inst0

SICL Addressing (Using LAN Client)

iopen ("lan [instrument1]:gpib0,5") Open IO path to LAN instrument at address 5
iopen ("lan [1.2.3.4]:gpib0,3") Open |0 path to LAN instrument at address 3
K iopen ("lan [instrument3]:inst0") Open IO path to LAN instrument3 /

188 Chapter 8

Using 10 Config

Example:
Configuring LAN
Server Interface

Using SICL with LAN
Introduction to LAN Interfaces

Configuring LAN Server Interfaces

An 10 interface can be defined as both a hardware interface and as a
software interface. The purpose of the IO Config utility is to associate a
unique interface name with a hardware interface.

The 10 Libraries use an Interface Name or Logical Unit Number to identify an
interface. This information is passed in the parameter string of the viOpen
function call in a VISA program or in the 1open function call in a SICL
program. IO Config assigns an Interface Name and Logical Unit Number to
the interface hardware, as well as other necessary configuration values for
an interface when the interface is configured. See the Agilent /O Libraries
Installation and Configuration Guide for Windows for details on 10 Config.

The LAN Server interface system in the following figure consists of a
Windows PC acting as a LAN client, a second PC acting as a LAN server,
and a GPIB instrument. The 10 Config utility has been used to assign the
LAN card a SICL name of “lan”. Also, the GPIB card in the LAN server PC
has been assigned SICL name of “hpib7”. The LAN server PC has been
assigned a name of machine2. Since unique names have been assigned by
IO Config, you can now use the iopen command to open the 10 paths to the
GPIB instruments as shown in the figure.

4 N

LAN Server (PC as Server)

Windows PC Windows PC GPIB Instrument

Interface SICL Names (LAN Client) (LAN Server)

machine2

SICL name
hpib7

SICL Name
LAN Card: "lan" LAN Card GPIB Card 5
GPIB Card: "hpib7" LAN GPIB

SICL Addressing

K iopen ("lan,[machine2]:hpib7, 5") Open IO path to GPIB instrument at address 5 J

Chapter 8 189

Creating a LAN-
gatewayed Session

Example: LAN-
gatewayed
Addressing

Using SICL with LAN
Using LAN-gatewayed Sessions

Using LAN-gatewayed Sessions

This section gives guidelines to use LAN-gatewayed Sessions, including:

B Addressing Guidelines
B SICL Function Support
B Example Programs

Addressing Guidelines

Communicating with a device over LAN via a LAN-to-instrument_interface
gateway preserves the functionality of the gatewayed-interface with a few
exceptions. Thus, most operations over an interface (such as GPIB
connected directly to your controller), can also be performed over a remote
interface via the LAN gateway.

The only portions of your application that must be changed are the
addresses passed to the iopen calls (unless those addresses are stored
in a configuration file, in which case no changes to the application itself are
required). The address used for a local interface must have a LAN prefix
added so the SICL software knows to direct the request to a LAN server on
the network.

To create a LAN-gatewayed session, specify the LAN'’s interface logical unit
or interface name, the IP address or hostname of the server machine, and
the address of the remote interface or device in the addr parameter of the
iopen function. The interface logical unit and interface name are defined by
running the 10 Config utility.

To open the the IO Config utility, click the Agilent IO Libraries Control and
then click Run IO Config. See the Agilent /O Libraries Installation and
Configuration Guide for Windows for information on running 10 Config.

Some examples of LAN-gatewayed addresses follow. If you are using the
IP address of the server machine rather than the hostname, you must use
the bracket (not the comma) notation.

lan,128.10.0.3:gpib (Incorrect)
1an[128.10.0.3]:gpib (Correct)

190 Chapter 8

Using SICL with LAN
Using LAN-gatewayed Sessions

Address

Description

lan[instserv]:GPIB,7

A device address corresponding to the device at primary address 7 on
the GPIB interface attached to the machine named instserv. The
default LAN protocol set when the LAN interface was configured with
10 Config will be used.

lan;vxi-11[instserv]:GPIB,7

A device address corresponding to the device at primary address 7
on the GPIB interface attached to the machine named instserv. The
VXI-11 protocol (TCP/IP Instrument protocol) will be used.

lan;sicl-lan [instserv]:GPIB,7

A device address corresponding to the device at primary address 7 on
the GPIB interface attached to a machine named instserv. The SICL-
LAN protocol will be used.

lan;auto[instserv]:GPIB,7

A device address corresponding to the device at primary address 7 on
the GPIB interface attached to a machine named instserv. The SICL-
LAN protocol will be used if the server supports it. Otherwise, the VXI-
11protocol will be used.

lan;default[instserv]:GPIB,7

A device address corresponding to the device at primary address 7
on the GPIB interface attached to a machine named instserv. The
default LAN protocol set when the lan interface was configured with 10
Config will be used. This is the same as not specifying a protocol.

lan[instserv.agilent.com):gpib,7

A device address corresponding to the device at primary address 7 on
the gpib interface attached to the machine named instserv in the
agilent.com domain. (Fully qualified domain names may be used.)

1an1[128.10.0.3]:GPIB0,3,2

A device address corresponding to the device at primary address 3,
secondary address 2, on the GPIBO interface attached to the machine
with IP address 7128.710.0.3

lan1[intserv]:GPIB2

An interface address corresponding to the GPIB2 interface attached
to the machine named intserv.

30,intserv:gpib,3,2

A device address corresponding to the device at primary address 3,
secondary address 2, on the gpib interface attached to the machine
named intserv. (30 is the default logical unit for LAN.)

lan[intserv]:GPIB,cmdr

A commander session with the GPIB interface attached to the
machine named intserv. (Assuming the server supports GPIB
commander sessions.)

Chapter 8

191

Remote Interface
Support

Using SICL with LAN

Using LAN-gatewayed Sessions

SICL Function Support

This table shows the relationship between the address passed to iopen, the
session type returned by igetsesstype, the interface type returned by
igetintftype, and the value returned by igetgatewaytype.

Address Session Type Interface Type Gateway Type
lan I_SESS_INTF I_INTF_LAN I_INTF_NONE
lan[instserv]:hpib I_SESS_INTF I_INTF_GPIB I_INTF LAN
lan[instserv]:hpib,7 I_SESS_DEV I_INTF_GPIB I_INTF LAN

hpib

I_SESS_INTF

I_INTF_GPIB

I_INTF_NONE

hpib,7

I_SESS_DEV

I_INTF_GPIB

I_INTF_NONE

A gatewayed-session to a remote interface provides the same SICL function
support as if the interface was local, with the following exceptions or

qualifications.

Type of Functions

SICL Functions NOT Supported

SICL functions not

either protocol

supported over LAN using

iblockcopy, imap, imapinfo, ipeek,
ipoke, ipopfifo,ipushfifo, iunmap,
iblockmovex, imapx, iunmapx, ipeekx,
ipokex, iunmapx

protocol

SICL functions, in addition
to those listed above, not
supported with the VXI-11

All RS-232/serial specific functions
igetlu, ionintr, isetintr,
igetintfsess, igetonintr,
igpibgettldelay, igpibppoll
igpibppollconfig, igpibppollresp,
igpibsettldelay

For the igetdevaddr, igetintftype, and igetsesstype functions
to be supported with the VXI-11 (TCP/IP Instrument Protocol), the remote
address strings must follow the VXI-11 naming conventions — gpib0,
gpibl, etc. For example:

gpib0, 7
gpibl, 7,2
gpib2

vxi0, vxil, etc. (for example: vxi0,8 or vxiO)

192

Chapter 8

LAN Timeout
Functions

Example: LAN-
gatewayed Session
()

Using SICL with LAN
Using LAN-gatewayed Sessions

However, since the interface names at the remote server may be
configurable, this is not guaranteed. Correct behavior of iremote and
iclear depend on the correct address strings being used. When iremote
is executed over the VXI-11 protocol, iremote also sends the LLO (local
lockout) message in addition to placing the device in the remote state.

Any of the following functions may timeout over LAN, even those functions
that cannot timeout over local interfaces. (See “Using Timeouts with LAN” in
this chapter for more details.) These functions all cause a request to be sent
to the server for execution.

All GPIB specific functions

All RS-232/serial specific functions

jiabort, iclear, iclose, iflush, ifread, ifwrite, igetintfsess,
ilocal, ilock, ionintr, ionsrq, iopen, iprintf, ipromptf,
iread, ireadstb, iremote, iscanf, isetbuf, isetintr, isetstb,
isetubuf, itrigger, iunlock, iversion, iwrite, ixtrig

These SICL functions perform as follows with LAN-gatewayed sessions.

idrvrversion Returns the version numbers from the server.

iwrite, iread actualent may be reported as 0 when some bytes
were transferred to or from the device by the server.
This can happen if the client times out while the server
is in the middle of an I/O operation.

Example Programs

Two example programs for LAN-gatewayed sessions follow, one for C
Language and one for Visual Basic.

This example program opens a GPIB device session via a LAN-to-GPIB
gateway. This example is the same as the example in Chapter 4 - Using
SICL with GPIB, except the addresses passed to the iopen calls are
modified. The addresses in this example assume a machine with hostname
instserv is acting as a LAN-to-GPIB gateway.

Chapter 8 193

Using SICL with LAN
Using LAN-gatewayed Sessions

/* landev.c

This example program sends a scan list to a switch and
while looping closes channels and takes measurements.*/
#include <sicl.h>

#include <stdio.h>

main () {

INST dvm;
INST sw;

double res;

int i;

/* Print message and terminate on error */
ionerror (I _ERROR_EXIT);

/* Open the multimeter and switch sessions */
dvm = iopen (“lan[instserv]:hpib,9,3");

sw = iopen (“lan[instserv]:hpib,9,14”);
itimeout (dvm, 10000);

itimeout (sw, 10000);

/*Set up trigger*/
iprintf (sw, “TRIG:SOUR BUS\n”);

/*Set up scan list*/
iprintf (sw,”SCAN (@100:103)\n”);
iprintf (sw,”INIT\n”);

for (i=1;i<=4;i++) {
/* Take a measurement */
iprintf (dvm,”MEAS:VOLT:DC?\n”) ;

/* Read the results */
iscanf (dvm,”$%$1f”, &res);

/* Print the results */
printf (“Result is %f\n”,res);
/*Trigger to close channel*/
iprintf (sw, “TRIG\n”);
}
/* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

194

Chapter 8

Example: LAN-
gatewayed Session
(Visual Basic)

Using SICL with LAN
Using LAN-gatewayed Sessions

This example program opens a GPIB device session via a LAN-to-GPIB
gateway.

Option Explicit
Trryrryryryryyryryryryryrvyrrrrrrryrrrrrrrrrrrrrrrrrrrrrrrrrrrrrruooug
' landev.bas

' This example program opens a GPIB device session via
' a LAN-to-GPIB gateway. The addresses in this example
' assume a machine with hostname 'instserv' is acting as
' a LAN-to-GPIB gateway.

rryrryrryryvryryvryrvryryvrvrrrrvrrrrvrvrrrrrvrrrrrrrrrrrrrrrrrrrrrrnvn g

Sub Main ()
Dim dvm As Integer, sw As Integer
Dim nargs As Integer, I As Integer
Dim actual As Long
Dim res As String * 20
' Set up an error handler within this subroutine
' that will get called if a SICL error occurs.
On Error GoTo ErrorHandler

'Open the multimeter and switch sessions
dvm = iopen("lan[intserv] :hpib7,9,3")
sw = iopen("lan[intserv]:hpib7,9,14")

Call itimeout (dvm, 10000)
Call itimeout (sw, 10000)

' set up the trigger
nargs = iwrite(sw, "TRIG:SOUR BUS" + Chr$ (10)
+ Chr$(0), 14, 1, actual)

' set up scan list

nargs = iwrite(sw, "SCAN (@100:103)" + Chr$(10)
+ Chrs$(0), 15, 1, actual) B

nargs = iwrite(sw, "INIT" + Chr$(10) + Chrs$(0),
5, 1, actual)

Chapter 8 195

Using SICL with LAN
Using LAN-gatewayed Sessions

For I = 1 To 4 Step 1
' Take a measurement
nargs = iwrite (dvm, "MEAS:VOLT:DC?" + Chr$(10)
+ Chr$(0), 14, 1, actual) B

' Read the results
nargs = iread(dvm, res, 20, 0&, actual)

' Print the results
MsgBox "Channel " & I & " result: " + res & vbCrLf

' Trigger switch
nargs = iwrite(sw, "TRIG" + Chr$(10) + Chr$(0),
5, 1, actual)

Next T

Call iclose (dvm)
Call iclose(sw)

Exit Sub

ErrorHandler:
' Display the error message in the txtResponse TextBox.
MsgBox "*** Error : " + Error$

' Close the device session if iopen was successful.
If dvm <> 0 Then

Call iclose (dvm)
End If

If sw <> 0 Then
Call iclose(sw)
End If
End Sub

196 Chapter 8

Using SICL with LAN
Using LAN Interface Sessions

Using LAN Interface Sessions

The LAN interface, unlike most other supported SICL interfaces, does not
allow for direct communication with devices via interface commands. LAN
interface sessions, if used at all, will typically be used only for setting the
client side LAN timeout. (See “Using Timeouts with LAN” in this chapter.)

Addressing LAN To create a LAN interface session, specify the interface logical unit or
Interface Sessions interface name in the addr parameter of the iopen function. The interface
logical unit and interface name are defined by running the 10 Config utility.

To open the the IO Config utility, click the Agilent 10 Libraries Control and
then click Run IO Config. See the Agilent /O Libraries Installation and
Configuration Guide for Windows for information on running 10 Config.
Some examples of LAN interface addresses follow.

lan A LAN interface address using the interface name lan.

30 A LAN interface address using the logical unit 30. (30 is the default
logical unit for LAN.)

SICL Function These SICL functions are not supported over LAN interface sessions and
Support return I_ERR NOTSUPP.

All GPIB specific functions

All serial specific functions

All formatted I/O routines

iwrite, iread, ilock, iunlock, isetintr, itrigger, ixtrig,
ireadstb, isetstb, imapinfo, ilocal, iremote

These SICL functions perform as follows with LAN interface sessions.

iclear Performs no operation, returns I_ERR_NOERROR.

ionsrqg Performs no operation against LAN gateways for SICL,
returns I_ERR NOERROR.

ionintr Performs no operation, returns I_ERR_NOERROR.

igetluinfo Returns information about local interfaces only. Does not
return information about remote interfaces that are being
accessed via a LAN-to-instrument_interface gateway.

Chapter 8 197

Using SICL with LAN
Using Locks, Threads, and Timeouts

Using Locks, Threads, and Timeouts

This section gives guidelines to use locks, threads, and timeouts over LAN,
including:

B Using Locks and Threads Over LAN
W Using Timeouts Over LAN

Using Locks and Threads Over LAN

If two or more threads are accessing the same device or interface using
two or more different sessions over LAN and are using SICL locks to
synchronize access, some scenarios may cause timeouts or may “hang”
an application that does not use timeouts.

Scenarios to Avoid For proper operation, all threads that use their own sessions to access the
same device or interface should use the same string to identify the device or
interface in their calls to iopen. Therefore, the following scenarios should be
avoided.

B Using a hostname to identify the remote host in one call to iopen
while using an alias or IP address to identify the same host in
another call to iopen.

B Using a device symbolic name in one call to iopen (such as "dmm”,
where “dmm” equals “gpib, 1”) while using the fully specified device
name (such as “gpib, 1”) in another call.

B Using a remote interface’s logical unit (such as “7”) in one call while
using the remote interface’s symbolic name (such as “gpib”) in
another.

B Using igetintfsess to open an interface session (which internally
uses the logical unit to identify the remote interface)
while opening the interface with its symbolic name for another
session.

198 Chapter 8

Recommended
Usage

Client/Server
Operation

Using SICL with LAN
Using Locks, Threads, and Timeouts

You can avoid each scenario by always using the same strings to identify
the same device or interface in multi-threaded applications. You can also
use the igetintfsess function if other sessions use the logical unit to
specify the interface instead of the interface’s symbolic name.

If any thread uses ilock and iunlock to synchronize access to a
particular device or interface, all threads accessing that same device or
interface using a different session must also use ilock and iunlock.
WIN32 synchronization techniques may also be used to ensure that a
thread does not attempt I/O (iread/iwrite, etc.) to a device already
locked via a different session from a different thread within the same
process.

If a session has an interface locked, and if a different thread using its own
session attempts to lock a device on that interface, the device lock will be
held off either until the interface is unlocked by the other thread, or until a
timeout occurs on the device lock. This is different from how ilock works
on other interfaces (where a lock on a device when the device’s interface is
already locked will not hold off the i1lock operation, but rather will hold off
any subsequent I/O to the device).

Using Timeouts with LAN

The client/server architecture of the LAN software requires use of two
timeout values: one for the client and one for the server. The server’s
timeout value is the SICL timeout value specified with the itimeout
function. The client’s timeout value is the LAN timeout value, which may be
specified with the i1lantimeout function.

When the client sends an 1/O request to the server, the timeout value
specified with i timeout or with the SICL default is passed with the request.
The server uses that timeout in performing the 1/0 operation, just as if that
timeout value had been used on a local I/O operation.

If the server’s operation is not completed in the specified time, the server
sends a reply to the client that indicates that a timeout occurred, and the
SICL call made by the application returns I_ERR_TIMEOUT.

When the client sends an /O request to the server, it starts a timer and
waits for the reply from the server. If the server does not reply in the time
specified, the client stops waiting for the reply from the server and returns
I_ERR_TIMEOUT to the application.

Chapter 8 199

LAN Timeout
Functions

Default LAN
Timeout Values

Using SICL with LAN
Using Locks, Threads, and Timeouts

The ilantimeout and ilangettimeout functions can be used to set or
query the current LAN timeout value. They work much like the itimeout
and igettimeout functions. The use of these functions is optional,
however, since the software will calculate the LAN timeout based on the
SICL timeout in use and the configuration values set via the 10 Config utility.

Once ilantimeout is called by the application, the automatic

LAN timeout adjustment is turned off. See Chapter 9 - SICL Language
Reference for details on the ilantimeout and ilangettimeout
functions.

A timeout value of 1 used with the ilantimeout function has special
significance, causing the LAN client to not wait for a response from the
LAN server. However, the timeout value of 1 should be used only in special
circumstances and should be used with extreme caution. For more
information about this timeout value, see the ilantimeout function in
Chapter 9 - SICL Language Reference.

The 10 Config utility specifies two timeout-related configuration values for
the LAN software. These values are used by the software to calculate
timeout values if the application has not previously called ilantimeout.

Server Timeout Timeout value passed to the server when an application
either uses the SICL default timeout value of infinity or

sets the SICL timeout to infinity (0). Value specifies the
number of seconds the server will wait for the operation
to complete before returning I_ERR_TIMEOUT.

A value of 0 in this field will cause the server to be sent
a value of infinity if the client application also uses the
SICL default timeout value of infinity or sets the SICL
timeout to infinity (0).

Client Timeout Value added to the SICL timeout value (server’s timeout
Delta value) to determine the LAN timeout value (client’s
timeout value). Value specifies the number of seconds.

200 Chapter 8

Timeout Algorithm

Using SICL with LAN
Using Locks, Threads, and Timeouts

Once ilantimeout is called, the software no longer sends the Server
Timeout value to the server and no longer attempts to determine a
reasonable client-side timeout. It is assumed that the application itself wants
full control of timeouts, both client and server.

Also, ilantimeout is per process. That is, all sessions going out over the
network are affected when ilantimeout is called. If the application has not
called the ilantimeout function, timeouts are adjusted via the following
algorithm:

The SICL timeout, which is sent to the server, for the current call is
adjusted if it is currently infinity (0). In that case it will be set to the
Server Timeout value.

The LAN timeout is adjusted if the SICL timeout plus the Client
Timeout Delta is greater than the current LAN timeout. In that case
the LAN timeout will be set to the SICL timeout plus the Client
Timeout Delta.

The calculated LAN timeout only increases as necessary to meet the
needs of the application, but never decreases. This avoids the
overhead of readjusting the LAN timeout every time the application
changes the SICL timeout.

The first iopen call used to set up the server connection uses the
Client Timeout Delta specified via the 10 Config utility for portions of
the iopen operation. The timeout value for TCP connection
establishment is not affected by the Client Timeout Delta.

To change the defaults:

1

2

Exit any LAN applications for SICL to be reconfigured.

Run the IO Config utility. (Click the Agilent 10 Libraries Control and
then click Run IO Config.)

Change the Server Timeout and/or Client Timeout Delta value(s).

Restart the LAN applications for SICL.

Chapter 8 201

Timeouts in Multi-
threaded
Applications

Timeout
Configurations to Be
Avoided

Using SICL with LAN
Using Locks, Threads, and Timeouts

To manually set the client side timeout in an application using multiple
threads, be aware that ilantimeout may itself timeout due to contention
for the LAN subsystem where multiple threads in an application are
simultaneously using SICL over LAN.

Thus, if multiple threads are using SICL over LAN at the same time and
LAN timeouts are expected by the application, it is recommended that
ilantimeout be called when no other LAN I/O is occurring, such as
immediately after session creation (iopen).

The use of the ilantimeout No-Wait Value for certain special cases is
described under the ilantimeout function in Chapter 9 - SICL Language
Reference. If the no-wait value is used and multiple threads are attempting
I/O over the LAN, I/O operations using the no-wait option will wait for access
to the LAN for 2 minutes. If another thread is using the LAN interface for
greater than 2 minutes, the no-wait operation will timeout.

The LAN timeout used by the client should always be set greater than the
SICL timeout used by the server. This avoids the situation where the client
times out while the server continues to attempt the request, potentially
holding off subsequent operations from the same client. This also avoids
having the server send unwanted replies to the client.

The SICL timeout used by the server should generally be less than infinity.
Having the LAN server wait less than forever allows the LAN server to detect
clients that have ceased operation abruptly or network problems and
subsequently release resources associated with those clients, such as
locks.

Using the smallest possible value for your application will maximize the
server’s responsiveness to dropped connections, including the client
application being terminated abnormally. Setting a value less than infinity is
done by setting the Server Timeout configuration value via the 10 Config
utility.

Even if your application uses the SICL default of infinity or if itimeout is
used to set the timeout to infinity, by setting the Server Timeout value to
some reasonable number of seconds, the server will be allowed to timeout
and detect network trouble and release resources.

202 Chapter 8

Application
Terminations and
Timeouts

Using SICL with LAN
Using Locks, Threads, and Timeouts

If an application is stopped in the middle of a SICL operation performed at
the LAN server, the server continues to try the operation until the server’s
timeout is reached. By default, the LAN server associated with an
application using a timeout of infinity that is stopped may not discover that
the client is no longer running for 2 minutes. For a server other than the
LAN server on HP-UX, Windows 95/98/Me/2000/NT, or the E2050, check
that server’s documentation for its default behavior.

If itimeout is used by the application to set a long timeout value, or if both
the LAN client and LAN server are configured to use infinity or a long timeout
value, the server may appear “hung”. If this situation occurs, the LAN client
(via the Client Timeout Delta value set with the 10 Config utility) or the LAN
server (via its Server Timeout value) may be configured to use a shorter
timeout value.

If long timeouts must be used, the server may be reset. A LAN server may
be reset by logging into the server system and stopping the LAN server that
is running. The latter procedure will affect all clients connected to the server.
See Appendix B - Troubleshooting SICL Programs for more details. Also,
see the documentation of the server you are using for methods to reset the
server.

Chapter 8 203

Using SICL with LAN
Using Locks, Threads, and Timeouts

Notes:

204 Chapter 8

SICL Language Reference

Chapter 9 205

SICL Language Reference

This chapter defines all supported SICL functions, listed in alphabetical
order. The chapter includes an introduction that describes the format and
content for each function, and an alphabetical listing of each function.

206 Chapter 9

Introduction

Introduction

Each SICL function description includes:

B C syntax and Visual Basic syntax (if the function is supported on
Visual Basic)

B Complete description

B Return value(s)

B Related SICL functions

This edition describes syntax structure to program SICL applications in
Visual Basic version 4.0 or later. For SICL applications written in Visual
Basic versions less than version 4.0, you can port the applications to Visual
Basic version 4.0 or greater. See Appendix A - SICL Library Information.
Also, Appendix A lists all SICL error codes and summarizes supported
features of each core and interface-specific SICL function.

Function Specifics

Category Description

Session Identifiers | SICL uses session identifiers to refer to specific SICL
sessions. The iopen function creates a SICL session
and returns a session identifier. A session identifier is
needed for most SICL functions. For the C and C++
languages, SICL defines the variable type INST.

C and C++ programs should declare session identifiers to
be of type INST. For example:
INST id;

Visual Basic programs should declare session identifiers
to be of type Integer. For example:
DIM id As Integer

Device, Interface, |Some SICL functions are supported on device sessions,
and Commander some on interface sessions, some on commander sessions,
Sessions and some on all three. The listing for each function indicates
which sessions support that function.

Chapter 9 207

Introduction

Category Description

Functions Some functions are affected by locks (see the ilock

Affected by function). This means that if the device or interface that the

Locks session refers to is locked by another process, this function
will block and wait for the device or interface to be unlocked
before it will succeed, or it will return immediately with the
error I_ERR_LOCKED. Refer to the isetlockwait function.

Functions Some functions are affected by timeouts (see the itimeout

Affected by function). This means that if the device or interface that the

Timeouts session refers to is currently busy, this function will wait for the

amount of time specified by i timeout to succeed. If it
cannot, it will return the error I_ERR_TIMEOUT.

Per-Process

Functions that do not support sessions and are not affected

Functions by ilock or itimeout are per-process functions. The SICL
function ionerror is an example of this. The ionerror
function installs an error handler for the process. As such, it
handles errors for all sessions in the process regardless of the
type of session.

208 Chapter 9

SICL Language Reference

IBLOCKCOPY
IBLOCKCOPY
Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int ibblockcopy (id, src, dest, cnt);
INST id;

unsigned char *src;

unsigned char *dest;

unsigned long cnt;

int iwblockcopy (id, src, dest, cnt, swap) ;
INST id;

unsigned char *src;

unsigned char *dest;

unsigned long cnt;

int swap;

int ilblockcopy (id, src, dest, cnt, swap) ;
INST id;

unsigned char *src;

unsigned char *dest;

unsigned long cnt;

int swap;

Visual Basic Syntax

Function ibblockcopy
(ByVal id As Integer, ByVal Src As Long,
ByVal dest As Long, ByVal cnt As Long)

Function iwblockcopy

(ByVal id As Integer, ByVal Src As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As Integer)

Function ilblockcopy

(ByVal id As Integer, ByVal src As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As Integer)

Chapter 9 209

SICL Language Reference
IBLOCKCOPY

Description

This function is not supported over LAN. The three forms of iblockcopy
assume three different types of data: byte, word, and long word (8 bit, 16 bit,
and 32 bit). The iblockcopy functions copy data from memory on one
device to memory on another device. They can transfer entire blocks of
data.

The id parameter, although specified, is normally ignored except to
determine an interface-specific transfer mechanism such as DMA. To
prevent using an interface-specific mechanism, pass a zero (0) for this
parameter.

The src argument is the starting memory address for the source data. The
dest argument is the starting memory address for the destination data. The
cnt argument is the number of transfers (bytes, words, or long words) to
perform.

The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero the function swaps bytes (if necessary) to
change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering.

NOTE

If a bus error occurs, unexpected results may occur.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs.

For Visual Basic programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also
IPEEK, IPOKE, IPOPFIFO, IPUSHFIFO

210 Chapter 9

SICL Language Reference

IBLOCKMOVEX
IBLOCKMOVEX
Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int iblockmovex (id, src_handle, src_offset, src_width,

src_increment, dest_handle, dest_offset,
dest_width, dest_increment, cnt, swap) ;

INST id;

unsigned long Ssrc_handle;
unsigned long src_offset;
int src_width;

int Ssrc_increment;
unsigned long dest handle;
unsigned long dest offset;
int dest_width;

int dest_increment;
unsigned long cnt;

int swap;

Visual Basic Syntax

Function iblockmovex
(ByVal id As Integer, ByVal src_handle As Long,

ByVal
ByVal
ByVal
ByVal
ByVal

src_offset as Long, ByValue src_width as Integer,
src_increment as Integer, ByVal dest _handle As Long,
dest offset as Long, ByVal dest width as Integer,
dest increment as Integer, ByVal cnt As Long,
swap As Integer)

NOTE

Not supported over LAN. If either the src_handle or the dest_handle is
NULL, the handle is assumed to be for local memory. In this case, the
corresponding offset is a valid memory address.

Chapter 9

21

SICL Language Reference
IBLOCKMOVEX

Description

iblockmovex moves data (8-bit byte, 16-bit word, and 32-bit long word).
from memory on one device to memory on another device. This function
allows local-to-local memory copies (both src_handle and dest_handle are
zero), VXI-to-VXI memory transfers (both src_handle and dest_handle are
valid handles), local-to-VXI memory transfers (src_handle is zero,
dest_handle is valid handle), or VXI-to-local memory transfers (src_handle is
valid handle, dest_handle is zero). If a bus error occurs, unexpected results
may occur.

The id parameter is the value returned from iopen. If the id parameter is
zero (0) then all handles must be zero and all offsets must be either local
memory or directly dereferencable VXI pointers.

The src_handle argument is the starting memory address for the source
data. The dest_handle argument is the starting memory address for the
destination data. These handles must either be valid handles returned from
the imapx function (indicating valid VXI memory), or zero (0) indicating local
memory.

Both src_width and dest_width must be the same value. They specify the
width (in number of bits) of the data. Specify them as 8, 16, or 32. Offset
values (src_offset and dest_offset) are generally used in memory transfers
to specify memory locations. The increment parameters specify whether or
not to increment memory addresses.

The cnt argument is the number of transfers (bytes, words, or long words) to
perform. The swap argument is the byte swapping flag. If swap is zero, no
swapping occurs. If swap is non-zero the function swaps bytes (if necessary)
to change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs.

For Visual Basic programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also

IPEEKXS8, IPEEKX16, IPEEKX32, IPOKEX8, IPOKEX16, IPOKEX32,
IPOPFIFO, IPUSHFIFO, IDEREFPTR

212 Chapter 9

SICL Language Reference
ICAUSEERR

ICAUSEERR

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

void icauseerr (id, errcode, flag) ;
INST id;

int errcode;

int flag;

Visual Basic Syntax

Sub icauseerr
(ByVal id As Integer, ByVal errcode As Integer,
Byval flag As Integer)

Description

Occasionally it is necessary for an application to simulate a SICL error. The
icauseerr function performs that function. This function causes SICL to
act as if the error specified by errcode (see Appendix B - Troubleshooting
SICL Programs for a list of errors) has occurred on the session specified by
id. If flag is 1, the error handler associated with this process is called (if
present). Otherwise, the error handler is not called.

On operating systems that support multiple threads, the error is per-thread,
and the error handler will be called in the context of this thread.

See Also
IONERROR, IGETONERROR, IGETERRNO, IGETERRSTR

Chapter 9 213

SICL Language Reference
ICLEAR

ICLEAR

Supported sessions: device, interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>
int iclear (d);
INST id;

Visual Basic Syntax

Function iclear
(ByVal id As Integer)

Description

Use the iclear function to clear a device or interface. If id refers to a
device session, this function sends a device clear command. If id refers to
an interface, this function sends an interface clear command.

The iclear function also discards the data in both the read and the write
formatted I/O buffers. This discard is equivalent to performing the following
iflush call (in addition to the device or interface clear function):

iflush (id, I_BUF DISCARD READ | I_BUF _DISCARD WRITE) ;

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IFLUSH and the interface-specific chapter for details of implementation.

214 Chapter 9

SICL Language Reference
ICLOSE

ICLOSE

Supported sessions: device, interface, commander
C Syntax
#include <sicl.h>

int iclose (id);
INST id;

Visual Basic Syntax

Function iclose
(ByVal id As Integer)

Description

Once you no longer need a session, close it using the iclose function.
This function closes a SICL session. After calling this function, the value in
the id parameter is no longer a valid session identifier and cannot be used
again.

NOTE

Do not call iclose from an SRQ or interrupt handler, as it may cause
unpredictable behavior.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IOPEN

Chapter 9 215

SICL Language Reference
IDEREFPTR

IDEREFPTR

Supported Sessions: device, interface, commander

C Syntax

#include <sicl.h>

int idereptr (id, handle, *value) ;
INST id;
unsigned long handle;
unsigned char *value;

Visual Basic Syntax

Function iderefptr
(Byval id as Integer, ByVal handle as Long,
ByVal value as Integer)

Description

This function tests the handle returned by imapx. The id is the valid SICL
session id returned from the iopen function, handle is the valid SICL map
handle obtained from the imapx function.

This function sets *value to zero (0) if imap or imapx returns a map handle
that cannot be used as a memory pointer; you must use ipeekx8,
ipeekx16, ipeekx32, ipokex8, ipokex16, ipokex32, or
iblockmovex functions. Alternately, the function returns a non-zero value
if imapx returns a valid memory pointer that can be directly dereferenced.

Return Value

For C programs, this function returns zero (0) if successful or it returns a
non-zero error number if an error occurs. For Visual Basic programs, no
error number is returned. Instead, the global Err variable is set if an error
occurs.

See Also

IMAPX, IUNMAPX, IPEEKXS8, IPEEKX16, IPEEKX32, IPOKEXS,
IPOKEX16, IPOKEX32, IBLOCKMOVEX

216 Chapter 9

SICL Language Reference

IFLUSH
IFLUSH
Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int iflush (id, mask) ;
INST id;
int mask;

Visual Basic Syntax

Function iflush
(ByVal id As Integer, ByVal mask As Integer)

Description

This function is used to manually flush the read and/or write buffers used by
formatted I/O. The mask may be one or a combination of the following flags:

I_BUF READ Indicates the read buffer (iscanf). If data is
present, it will be discarded until the end of data
(that is, if the END indicator is not currently in the
buffer, reads will be performed until it is read).

I_BUF_WRITE Indicates the write buffer (iprint£). If data is
present, it will be written to the device.

I_BUF_WRITE_END Flushes the write buffer of formatted 1/0O
operations and sets the END indicator on the last
byte (for example, sets EOI on GPIB).

I_BUF_DISCARD_ READ Discards the read buffer (does not perform
1/0 to the device).

I_BUF_DISCARD WRITE Discards the write buffer (does not perform
1/0 to the device).

The I_BUF_READ and I_BUF_WRITE flags may be used together (by
OR-ing them together), and the I_BUF_DISCARD_READ and
I_BUF_DISCARD WRITE flags may be used together. Other combinations
are invalid.

Chapter 9 217

SICL Language Reference
IFLUSH

If iclear is called to perform either a device or interface clear, both the
read and the write buffers are discarded. Performing an iclear is
equivalent to performing the following iflush call (in addition to the device
or interface clear function):

iflush (id, I_BUF_DISCARD READ | I_BUF_DISCARD WRITE);

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also

IPRINTF, ISCANF, IPROMPTF, IFWRITE, IFREAD, ISETBUF, ISETUBUF,
ICLEAR

218 Chapter 9

SICL Language Reference

IFREAD
IFREAD
Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int ifread (id, buf, bufsize, reason, actualcnt) ;
INST id;

char *buf;

unsigned long bufsize;

int *reason;

unsigned long *actualcnt;

Visual Basic Syntax

Function ifread

(Byval id As Integer, buf As String,
ByVal bufsize As Long, reason As Integer,
actual As Long)

Description

This function reads a block of data from the device via the formatted 1/O read
buffer (the same buffer used by iscanf). The buf argument is a pointer to
the location where the block of data can be stored. The bufsize argument is
an unsigned long integer containing the size, in bytes, of the buffer specified
in buf.

The reason argument is a pointer to an integer that, upon exiting i fread,
contains the reason why the read terminated. If the reason parameter
contains a zero (0), no termination reason is returned. The reason argument
is a bit mask, and one or more reasons can be returned. Values for reason
include:

I_TERM MAXCNT bufsize characters read.
I_TERM END END indicator received on last character.
I_TERM CHR Termination character enabled and received.

Chapter 9 219

SICL Language Reference
IFREAD

The actualcnt argument is a pointer to an unsigned long integer which, upon
exit, contains the actual number of bytes read from the formatted I/O read
buffer.

If a termination condition occurs, the i fread will terminate. However, if
there is nothing in the formatted I/O read buffer to terminate the read,
ifread will read from the device, fill the buffer again, etc..

This function obeys the itermchr termination character, if any, for the
specified session. The read terminates only on one of the following
conditions:

B It reads bufsize number of bytes.
B |t finds a byte with the END indicator attached.

B |t finds the current termination character in the read buffer
(set with itermchr).

B An error occurs.

This function acts identically to the iread function, except the data is not
read directly from the device. Instead the data is read from the formatted 1/0
read buffer. The advantage to this function over iread is that it can be
intermixed with calls to iscanf, while iread may not.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IPRINTF, ISCANF, IPROMPTF, IFWRITE, ISETBUF, ISETUBUF, IFLUSH,
ITERMCHR

220 Chapter 9

SICL Language Reference

IFWRITE
IFWRITE
Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int ifwrite (id, buf, datalen, end, actualcnt) ;
INST id;

char *buf;

unsigned long datalen;

int end;

unsigned long *actualcnt;

Visual Basic Syntax

Function ifwrite

(Byval id As Integer, ByVal buf As String,
ByVal datalen As Long, ByVal endi As Integer,
actual As Long)

Description

This function is used to send a block of data to the device via the formatted
I/0 write buffer (the same buffer used by iprint£). The id argument
specifies the session to send the data to when the formatted 1/0O write buffer
is flushed. The buf argument is a pointer to the data that is to be sent to the
specified interface or device. The datalen argument is an unsigned long
integer containing the length of the data block in bytes.

If the end argument is non-zero, this function will send the END indicator
with the last byte of the data block. Otherwise, if end is set to zero, no
END indicator will be sent.

The actualcnt argument is a pointer to an unsigned long integer. Upon exit,
it will contain the actual number of bytes written to the specified device.
NULL pointer can be passed for this argument, and it will be ignored.

This function acts identically to the iwrite function, except the data is not
written directly to the device. Instead the data is written to the formatted 1/0
write buffer (the same buffer used by iprint£). The formatted I/O write
buffer is then flushed to the device at normal times, such as when the buffer
is full, or when iflush is called.

Chapter 9 221

SICL Language Reference
IFWRITE

The advantage to this function over iwrite is that it can be intermixed with
calls to iprintf, while iwrite cannot.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IPRINTF, ISCANF, IPROMPTF, IFREAD, ISETBUF, ISETUBUF, IFLUSH,
ITERMCHR, IWRITE, IREAD

222 Chapter 9

SICL Language Reference
IGETADDR

IGETADDR

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int igetaddr (id, addr);
INST id;
char * *addr;

Description

The igetaddr function returns a pointer to the address string which was
passed to the iopen call for the session id. This function is not supported
on Visual Basic.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IOPEN

Chapter 9 223

SICL Language Reference
IGETDATA

IGETDATA

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int igetdata (id, dafa) ;
INST id;
void * *data;

Description

The igetdata function retrieves the pointer to the data structure stored by
isetdata associated with a session. This function is not supported on Visual
Basic

The isetdataligetdata functions provide a good method of passing data to
event handlers, such as error, interrupt, or SRQ handlers. For example, you
could set up a data structure in the main procedure and retrieve the same
data structure in a handler routine. You could set a device command string
in this structure so an error handler could re-set the state of the device on
errors.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
ISETDATA

224 Chapter 9

SICL Language Reference
IGETDEVADDR

IGETDEVADDR

Supported SesSIONS: device

C Syntax
#include <sicl.h>
int igetdevaddr (id, prim, sec);
INST id;
int *prim;
int *sec;
Visual Basic Syntax

Function igetdevaddr
(ByVal id As Integer, prim As Integer,
Sec As Integer)

Description

The igetdevaddr function returns the device address of the device
associated with a given session. This function returns the primary device
address in prim. The sec parameter contains the secondary address of the
device or -1 if no secondary address exists.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IOPEN

Chapter 9 225

SICL Language Reference
IGETERRNO

IGETERRNO
C Syntax

#include <sicl.h>

int igeterrno ();

Visual Basic Syntax

Function igeterrno ()

Description

All functions (except a few listed below) return a zero if no error occurred
(I_ERR_NOERROR), Or a non-zero error code if an error occurs (see
Appendix B - Troubleshooting SICL Programs). This value can be used
directly. The igeterrno function will return the last error that occurred in
one of the library functions.

If an error handler is installed, the library calls the error handler when an
error occurs.The following functions do not return the error code in the return
value. Instead, they indicate whether an error occurred.

jopen,iprintf,isprintf,ivprintf, isvprintf,iscanf,
isscanf,ivscanf,isvscanf,ipromptf, ivpromptf, imap,
i?peek, i?poke

For these functions (and any of the other functions), when an error is
indicated, read the error code by using the igeterrno function, or read
the associated error message by using the igeterrstr function.

Return Value

This function returns the error code from the last failed SICL call. If a SICL
function is completed successfully, this function returns undefined results.

On operating systems that support multiple threads, the error number is
per-thread. This means that the error number returned is for the last failed
SICL function for this thread (not necessarily for the session).

See Also
IONERROR, IGETONERROR, IGETERRSTR, ICAUSEERR

226 Chapter 9

SICL Language Reference
IGETERRSTR

IGETERRSTR
C Syntax

#include <sicl.h>

char *igeterrstr (errorcode) ;
int errorcode;

Visual Basic Syntax

Function igeterrstr
(ByVal errcode As Integer, myerrstr As String)

Description

SICL has a set of defined error messages that correspond to error codes
(see Appendix B - Troubleshooting SICL Programs) that can be generated in
SICL functions. To get these error messages from error codes, use the
igeterrstr function.

Return Value

Pass this function the error code you want and this function will return a
human-readable string.

See Also
IONERROR, IGETONERROR, IGETERRNO, ICAUSEERR

Chapter 9 227

SICL Language Reference
IGETGATEWAYTYPE

IGETGATEWAYTYPE

Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>
int igetgatewaytype (id, gwtype) ;

INST id;
int *gwtype;

Visual Basic Syntax

Function igetgatewaytype
(ByVal id As Integer, pdata As Integer) As Integer

Description

The igetgatewaytype function returns in gwtype the gateway type
associated with a given session id. This function returns one of the following
values in gwtype:

I_INTF_LAN The session is using a LAN gateway to access the
remote interface.

I_INTF_NONE The session is not using a gateway.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
Chapter 8 - Using SICL with LAN

228 Chapter 9

SICL Language Reference
IGETINTFSESS

IGETINTFSESS

Supported sessions: device, commander

C Syntax

#include <sicl.h>

INST igetintfsess (id);
INST id;

Visual Basic Syntax

Function igetintfsess
(ByVal id As Integer)

Description

The igetint£fsess function takes the device session specified by id and
returns a new session id that refers to an interface session associated with
the interface that the device is on.

Most SICL applications will take advantage of the benefits of device
sessions and not want to bother with interface sessions. Since some
functions only work on device sessions and others only work on interface
sessions, occasionally it is necessary to perform functions on an interface
session, when only a device session is available for use. An example is to
perform an interface clear (see iclear) from within an SRQ handler (see
ionsrq).

In addition, multiple calls to igetintfsess with the same id will return the
same interface session each time. This makes this function useful as a filter,
taking a device session in and returning an interface session. SICL will close
the interface session when the device or commander session is closed.
Therefore, do not close this session.

Return Value

If no errors occur, this function returns a valid session id. Otherwise, it
returns zero (0).

See Also
IOPEN

Chapter 9 229

SICL Language Reference
IGETINTFTYPE

IGETINTFTYPE

Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>
int igetintftype (id, pdata) ;

INST id;
int *pdata;

Visual Basic Syntax

Function igetintftype
(ByVal id As Integer, pdata As Integer)

Description

The igetint£ftype function returns a value indicating the type of interface
associated with a session. This function returns one of the following values
in pdata:

I_INTF_GPIB This session is associated with a GPIB interface.

I_INTF_GPIO This session is associated with a GPIO interface.

I_INTF_LAN This session is associated with a LAN interface.

I_INTF_RS232 This session is associated with an RS-232 (Serial)
interface.

I_INTF VXI This session is associated with a VXI interface.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exrr variable is set if an error occurs.

See Also
IOPEN

230 Chapter 9

SICL Language Reference
IGETLOCKWAIT

IGETLOCKWAIT

Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>
int igetlockwait (id, flag) ;

INST id;
int *flag;

Visual Basic Syntax

Function igetlockwait
(Byval id As Integer, flag As Integer)

Description

To get the current status of the lockwait flag, use the igetlockwait
function. This function stores a one (7) in the variable pointed to by flag

if the wait mode is enabled, or a zero (0) if a no-wait, error-producing mode
is enabled.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ILOCK, IUNLOCK, ISETLOCKWAIT

Chapter 9 231

SICL Language Reference
IGETLU

IGETLU

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int igetlu (id, lu);
INST id;
int *lu;

Visual Basic Syntax

Function igetlu
(ByVal id As Integer, lu As Integer)

Description

The igetlu function returns in /u the logical unit (interface address) of the
device or interface associated with a given session id.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IOPEN, IGETLUINFO

232 Chapter 9

SICL Language Reference
IGETLUINFO

IGETLUINFO
C Syntax

#include <sicl.h>

int igetluinfo (lu, luinfo);
int lu;
struct lu_info *luinfo;

Visual Basic Syntax

Function igetluinfo
(ByVal lu As Integer, result As [u_info)

Description

The igetluinfo function is used to get information about the interface
associated with the /u (logical unit). For C programs, the lu_info structure
has the following syntax:

struct lu_info {

long logical_unit; /* same as value passed into
igetluinfo */

char symname[32]; /* symbolic name assigned to interface
*/

char cardname([32]; /* name of interface card */

long intftype; /* same value returned by igetintftype
*/

}i

For Visual Basic programs, the /u_info structure has the following syntax:
Type lu info

logical unit As Long

symname As String

cardname As String

fillerl As Long
intftype As Long

End Type

Chapter 9 233

SICL Language Reference
IGETLUINFO

In a given implementation, the exact structure and contents of the /u_info
structure is implementation-dependent. The structure can contain any
amount of non-standard, implementation-dependent fields. However, the
structure must always contain the above fields.

If you are programming in C, see the sicl.h file to get the exact lu_info
syntax. If you are programming in Visual Basic, see the SICL.BAS or
SICL4 .BAS file for the exact syntax. igetluinfo returns information for
valid local interfaces only, not remote interfaces being accessed via LAN.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IOPEN, IGETLU, IGETLULIST

234 Chapter 9

SICL Language Reference
IGETLULIST

IGETLULIST
C Syntax

#include <sicl.h>

int igetlulist (lulist);
int * *lulist;
Visual Basic Syntax

Function igetlulist
(list() As Integer)

Description

The igetlulist function stores in lulist the logical unit (interface address)
of each valid interface configured for SICL. The last element in the list is set
to -1. This function can be used with igetluinfo to retrieve information
about all local interfaces.

Return Value

For C programs, this function returns zero (0) if successful orsuccessful or a
non-zero error number if an error occurs. For Visual Basic programs, no
error number is returned. Instead, the global Exrr variable is set if an error
occurs.

See Also
IOPEN, IGETLUINFO, IGETLU

Chapter 9 235

SICL Language Reference
IGETONERROR

IGETONERROR
C Syntax

#include <sicl.h>

int igetonerror (proc) ;
void (* *proc) (INST, int);

Description

This function is not supported on Visual Basic. The igetonerror function
returns the current error handler setting. This function stores the address of
the currently installed error handler into the variable pointed to by proc. If no
error handler exists, it will store a zero (0).

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IONERROR, IGETERRNO, IGETERRSTR, ICAUSEERR

236 Chapter 9

SICL Language Reference
IGETONINTR

IGETONINTR

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int igetonintr (id, proc) ;
INST id;
void (* *proc) (INST, long, long);

Description

This function is not supported on Visual Basic. The igetonintr function
stores the address of the current interrupt handler in proc. If no interrupt
handler is currently installed, proc is set to zero (0).

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IONINTR, IWAITHDLR, IINTROFF, IINTRON

Chapter 9 237

SICL Language Reference
IGETONSRQ

IGETONSRQ

Supported sessions: device, interface

C Syntax

#include <sicl.h>

int igetonsrqg (id, proc) ;
INST id;
void (* *proc) (INST);

Description

This function is not supported on Visual Basic.The igetonsrq function
stores the address of the current SRQ handler in proc. If there is no SRQ
handler installed, proc will be set to zero (0).

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IONSRQ, IWAITHDLR, IINTROFF, INTRON

238 Chapter 9

SICL Language Reference
IGETSESSTYPE

IGETSESSTYPE

Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>
int igetsesstype (id, pdata) ;

INST id;
int *pdata;

Visual Basic Syntax

Function igetsesstype
(ByVal id As Integer, pdata As Integer)

Description

The igetsesstype function returns in pdata a value indicating the type of
session associated with a given session id. This function returns one of the
following values in pdata:

I_SESS_CMDR The session associated with id is a commander session.
I_SESS_DEV The session associated with id is a device session.
I_SESS_INTF The session associated with id is an interface session.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IOPEN

Chapter 9 239

SICL Language Reference
IGETTERMCHR

IGETTERMCHR

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int igettermchr (id, fchr);
INST id;
int x*fchr;

Visual Basic Syntax

Function igettermchr
(ByVal id As Integer, tchr As Integer)

Description

This function sets the variable referenced by tchr to the termination
character for the session specified by id. If no termination character is
enabled for the session, the variable referenced by fchr is set to -1.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ITERMCHR

240 Chapter 9

SICL Language Reference
IGETTIMEOUT

IGETTIMEOUT

Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>
int igettimeout (id, tval);

INST id;
long *tval;

Visual Basic Syntax

Function igettimeout
(ByVal id As Integer, tval As Long)

Description

The igettimeout function stores the current timeout value in tval.
If no timeout value has been set, tval will be set to zero (0).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ITIMEOUT

Chapter 9 241

SICL Language Reference
IGPIBATNCTL

IGPIBATNCTL

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int igpibatnctl (id, atnval);
INST id;
int atnval;

Visual Basic Syntax

Function igpibatnctl
(ByVal id As Integer, ByVal atnval As Integer)

Description

The igpibatnctl function controls the state of the ATN (Attention) line.
If atnval is non-zero, ATN is set. If atnval is 0, ATN is cleared.

This function is used primarily to allow GPIB devices to communicate
without the controller participating. For example, after addressing one device
to talk and another to listen, ATN can be cleared with igpibatnctl to
allow the two devices to transfer data.

NOTE

This function will not work with iwrite to send GPIB command data
onto the bus. The iwrite function on a GPIB interface session always
clears the ATN line before sending the buffer. To send GPIB command
data, use the igpibsendcmd function.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBSENDCMD, IGPIBRENCTL, IWRITE

242 Chapter 9

SICL Language Reference
IGPIBBUSADDR

IGPIBBUSADDR

Supported sessions: interface
Affected by functions: L. ilock, itimeout
C Syntax

#include <sicl.h>

int igpibbusaddr (id, busaddr) ;
INST id;
int busaddr;

Visual Basic Syntax

Function igpibbusaddr
(ByVal id As Integer, ByVal busaddr As Integer)

Description

This function changes the interface bus address to busaddr for the GPIB
interface associated with the session id.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBBUSSTATUS

Chapter 9 243

SICL Language Reference
IGPIBBUSSTATUS

IGPIBBUSSTATUS

Supported sessions: interface

C Syntax

#include <sicl.h>

int igpibbusstatus (id, request, result);
INST id;

int request;

int *result;

Visual Basic Syntax

Function igpibbusstatus
(ByVal id As Integer, ByVal request As Integer,
result As Integer)

Description

The igpibbusstatus function returns the status of the GPIB interface.
This function takes one of the following parameters in the request parameter
and returns the status in the resulf parameter.

I_GPIB_BUS_REM Returns a 7 if the interface is in remote mode,
0 otherwise.

I_GPIB BUS_SRQ Returns a 1 if the SRQ line is asserted,
0 otherwise.

I_GPIB_BUS_NDAC Returns a 71 if the NDAC line is asserted,
0 otherwise.

I_GPIB_BUS_SYSCTLR Returns a 7 if the interface is the system

controller, 0 otherwise.

I_GPIB_BUS_ACTCTLR Returns a 7 if the interface is the active
controller, 0 otherwise.

I_GPIB_BUS_TALKER Returns a 7 if the interface is addressed to talk,
0 otherwise.
I_GPIB_BUS_LISTENER Returns a 7 if the interface is addressed to

listen, O otherwise.

244 Chapter 9

SICL Language Reference
IGPIBBUSSTATUS

I_GPIB_BUS_ADDR

Returns the bus address (0-30) of this interface
on the GPIB bus.

I_GPIB_BUS_LINES

Returns the state of various GPIB lines. The result
is a bit mask with the following bits being
significant (bit 0 is the least-significant-bit):

Bit 0:
Bit 1:
Bit 2:
Bit 3:
Bit 4:
Bit 5:
Bit 6:
Bit 7:
Bit 8:
Bit 9:

1if SRQ line is asserted.

1 if NDAC line is asserted.

1if ATN line is asserted.

1 if DAV line is asserted.

1 if NRFD line is asserted.

1if EOIl line is asserted.

1if IFC line is asserted.

1if REN line is asserted.

1 if in REMote state.

1if in LLO (local lockout) mode.

Bit 10: 1 if currently the active controller.
Bit 11: 1 if addressed to talk.
Bit 12: 1 if addressed to listen.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBPASSCTL, IGPIBSENDCMD

Chapter 9

245

SICL Language Reference
IGPIBGETT1DELAY

IGPIBGETT1DELAY

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int igpibgettldelay (id, delay) ;
INST id;
int *delay;

Visual Basic Syntax

Function igpibgettldelay
(ByVal id As Integer, delay As Integer)

Description

This function retrieves the current setting of t1 delay on the GPIB interface
associated with session id. The value returned is the time of t1 delay in
nanoseconds.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBSETT1DELAY

246 Chapter 9

SICL Language Reference

IGPIBLLO
IGPIBLLO
Supported sessions: interface
Affected by functions: L. ilock, itimeout

C Syntax
#include <sicl.h>

int igpibllo (id);
INST id;

Visual Basic Syntax

Function igpibllo
(ByVal id As Integer)

Description

The igpibllo function puts all GPIB devices on the given bus in local
lockout mode. The id specifies a GPIB interface session. This function sends
the GPIB LLO command to all devices connected to the specified GPIB
interface. Local Lockout prevents you from returning to local mode by
pressing a device’s front panel keys.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IREMOTE, ILOCAL

Chapter 9 247

SICL Language Reference
IGPIBPASSCTL

IGPIBPASSCTL

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int igpibpassctl (id, busaddr) ;
INST id;
int busaddr;

Visual Basic Syntax

Function igpibpassctl
(ByVal id As Integer, ByVal busaddr As Integer)

Description

The igpibpassctl function passes control from this GPIB interface to
another GPIB device specified in busaddr. The busaddr parameter must be
between 0 and 30. This will also cause an I_INTR_ INTFDEACT interrupt,
if enabled.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IONINTR, ISETINTR

248 Chapter 9

SICL Language Reference

IGPIBPPOLL
IGPIBPPOLL
Supported sessions: interface
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int igpibppoll (id, result) ;
INST id;
unsigned int *result;

Visual Basic Syntax

Function igpibppoll
(ByVal id As Integer, result As Integer)

Description

The igpibppoll function performs a parallel poll on the bus and returns
the (8-bit) result in the lower byte of result.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBPPOLLCONFIG, IGPIBPPOLLRESP

Chapter 9 249

SICL Language Reference
IGPIBPPOLLCONFIG

IGPIBPPOLLCONFIG

Supported sessions: device, commander
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int igpibppollconfig (id, cval);
INST id;
unsigned int cval;

Visual Basic Syntax

Function igpibppollconfig
(ByVal id As Integer, ByVal cval As Integer)

Description

For device sessions, the igpibppollconfig function enables or disables
the parallel poll responses. If cval is greater than or equal to 0, the device
specified by id is enabled in generating parallel poll responses. In this case,
the lower 4 bits of cval correspond to:

bit 3 Set the sense of the PPOLL response. A 1 in this bit means that
an affirmative response means service request. A 0 in this bit
indicates an affirmative response means no service request.

bit 2-0 A value from 0-7 specifying GPIB line to respond on for PPOLLs.

If cval is equal to -1, the device specified by id is disabled from generating
parallel poll responses. For commander sessions, the igpibppollconfig
function enables and disables parallel poll responses for this device (that is,
how the devices responds when the controller PPOLLSs).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBPPOLL, IGPIBPPOLLRESP

250 Chapter 9

SICL Language Reference
IGPIBPPOLLRESP

IGPIBPPOLLRESP

Supported sessions: commander
Affected by functions: L. ilock, itimeout
C Syntax

#include <sicl.h>

int igpibppollresp (id, sval);
INST id;
int sval;

Visual Basic Syntax

Function igpibppollresp
(ByVal id As Integer, ByVal sval As Integer)

Description

The igpibppollresp function sets the state of the PPOLL bit (the state
of the PPOLL bit when the controller PPOLLS).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBPPOLL, IGPIBPPOLLCONFIG

Chapter 9 251

SICL Language Reference
IGPIBRENCTL

IGPIBRENCTL

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int igpibrenctl (id, ren);
INST id;
int ren;

Visual Basic Syntax

Function igpibrenctl
(ByVal id As Integer, ByVal ren As Integer)

Description

The igpibrenctl function controls the state of the REN (Remote Enable)
line. If ren is non-zero, REN is set. If ren is 0, REN is cleared.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBATNCTL

252 Chapter 9

SICL Language Reference
IGPIBSENDCMD

IGPIBSENDCMD

Supported sessions: interface
Affected by functions: L. ilock, itimeout
C Syntax

#include <sicl.h>

int igpibsendcmd (id, buf, length) ;
INST id;

char *buf;

int length;

Visual Basic Syntax

Function igpibsendcmd
(ByVal id As Integer, ByVal buf As String,
Byval length As Integer)

Description

The igpibsendcmd function sets the ATN line and then sends bytes to the
GPIB interface. This function sends length number of bytes from buf to the
GPIB interface. The igpibsendcmd function leaves the ATN line set. If the
interface is not active controller, this function will return an error.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBATNCTL, IWRITE

Chapter 9 253

SICL Language Reference
IGPIBSETT1DELAY

IGPIBSETT1DELAY

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int igpibsettldelay (id, delay) ;
INST id;
int delay;

Visual Basic Syntax

Function igpibsettldelay
(ByVal id As Integer, ByVal delay As Integer)

Description

This function sets the t1 delay on the GPIB interface associated with session
id. The value is the time of t1 delay in nanoseconds, and should be no less
than I_GPIB_T1DELAY MIN or no greater than I_GPIB_T1DELAY MAX.

Most GPIB interfaces only support a small number of t1 delays, so the
actual value used by the interface could be different than that specified in
the igpibsettldelay function. You can determine the actual value used
by calling the igpibgettldelay function.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIBGETT1DELAY

254 Chapter 9

SICL Language Reference

IGPIOCTRL
IGPIOCTRL
Supported sessions: interface
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int igpioctrl (id, request, setting) ;
INST id;

int request;

unsigned long setting;

Visual Basic Syntax

Function igpioctrl
(ByVal id As Integer, ByVal request As Integer,
ByVal sefting As Long)

Description

GPIO is not supported over LAN. The igpioctrl function is used to control
various lines and modes of the GPIO interface. This function takes request
and sets the interface to the specified setting. The request parameter can be
one of the following:

I_GPIO_AUTO_HDSK If the setting parameter is non-zero, the interface uses
auto-handshake mode (the default). This gives the
best performance for iread and iwrite operations.

If the setting parameter is zero (0), auto-handshake
mode is canceled. This is required for programs
that implement their own handshake using
I_GPIO_SET PCTL.

Chapter 9 255

SICL Language Reference
IGPIOCTRL

I_GPIO_AUX

The setting parameter is a mask containing the state
of all auxiliary control lines. A 1 bit asserts the
corresponding line. A 0 (zero) bit clears the
corresponding line.

When configured in Enhanced Mode, the E2075
interface has 16 auxiliary control lines. In 98622
Compatibility Mode, it has none. Attempting to use
I_GPIO_AUX in 98622 Compatibility Mode results in
the error: Operation not supported.

I_GPIO_CHK_PSTS

If the setting parameter is non-zero, the PSTS line is
checked before each block of data is transferred. If
the setting parameter is zero (0), the PSTS line is
ignored during data transfers. If the PSTS line is
checked and false, SICL reports the error: Device
not active or available.

I_GPIO_CTRL

The setting parameter is a mask containing the state
of all control lines. A 1 bit asserts the corresponding
line. A 0 (zero) bit clears the corresponding line.

The E2075 interface has two control lines, so only the
two least-significant bits have meaning for that
interface. These can be represented by the following.
All other bits in the setting mask are ignored.
I_GPIO_CTRL CTLO The CTLO line.
I_GPIO_CTRL CTL1 The CTL1 line.

I_GPIO_DATA

The setting parameter is a mask containing the state
of all data out lines. A 1 bit asserts the corresponding
line; a O (zero) bit clears the corresponding line. The
E2075 interface has 8 or 16 data out lines, depending
on the setting specified by igpiosetwidth. This
function changes data lines asynchronously, without
any type of handshake. It is intended for programs
that implement their own handshake explicitly.

I_GPIO_READ EOI

If the setting parameter is I_GPIO_EOI_NONE, END
pattern matching is disabled for read operations.

Any other setting enables END pattern matching with
the specified value. If the current data width is 16 bits,
the lower 16 bits of setting are used. If the current
data width is 8 bits, only the lower 8 bits of setting are
used.

256

Chapter 9

SICL Language Reference
IGPIOCTRL

I_GPIO_SET_ PCTL

If the setting parameter is non-zero, a GPIO
handshake is initiated by setting the PCTL line. Auto-
handshake mode must be disabled to allow explicit
control of the PCTL line. Attempting to use
I_GPIO_SET_ PCTL in auto-handshake mode results
in the error: Operation not supported.

I_GPIO_PCTL_DELAY

The setting parameter selects a PCTL delay value
from a set of eight “click stops” numbered 0 through 7.
A setting of 0 selects 200 ns. A setting of 7 selects
50 ps. For a complete list of delay values, see the
E2075 GPIO Interface Card Installation Guide.

Changes made by this function can remain in the
interface hardware after your program ends. On
HP-UX and Windows NT/Windows 2000, the setting
remains until the computer is rebooted. On Windows
95/98/Me, it remains until hp074i16.d11 is
reloaded.

I_GPIO_POLARITY

The setting parameter determines the logical polarity of
various interface lines according to the following bit
map. A 0 sets active-low polarity. A 7 sets active-high
polarity.

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Data Out Dataln PSTS PFLG PCTL
Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Changes made by this function can remain in the
interface hardware after your program ends. On
HP-UX and Windows NT/Windows 2000, the setting
remains until the computer is rebooted. On Windows
95/98/Me, it remains until hp074i16.d11 is
reloaded.

Chapter 9

257

SICL Language Reference
IGPIOCTRL

I_GPIO_READ CLK

The setting parameter determines when the data
input registers are latched. It is recommended that
you represent setting as a hex number. In that
representation, the first hex digit corresponds to the
upper (most-significant) input byte, and the second
hex digit corresponds to the lower input byte. The
clocking choices are: 0 = Read, 1 = Busy, 2 = Ready.
For an explanation of the data-in clocking, see the
E2075 GPIO Interface Card Installation Guide.

Changes made by this function can remain in the
interface hardware after your program ends. On
HP-UX and Windows NT/2000, the setting remains
until the computer is rebooted. On Windows
95/98VMe, it remains until hp074i16.d11 is
reloaded.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIOSTAT, IGPIOSETWIDTH

258

Chapter 9

SICL Language Reference
IGPIOGETWIDTH

IGPIOGETWIDTH

Supported sessions: interface

C Syntax
#include <sicl.h>
int igpiogetwidth (id, width) ;

INST id;
int *width;

Visual Basic Syntax

Function igpiogetwidth
(ByVal id As Integer, width As Integer)

Description

GPIO is not supported over LAN. The igpiogetwidth function returns
the current data width (in bits) of a GPIO interface. For the E2075 interface,
width will be either 8 or 16.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGPIOSETWIDTH

Chapter 9 259

SICL Language Reference
IGPIOSETWIDTH

IGPIOSETWIDTH

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int igpiosetwidth (id, width) ;
INST id;
int width;

Visual Basic Syntax

Function igpiosetwidth
(ByVal id As Integer, ByVal width As Integer)

Description

GPIO is not supported over LAN. The igpiosetwidth function is used to
set the data width (in bits) of a GPIO interface. For the E2075 interface, the
acceptable values for width are 8 and 16. While in 16-bit width mode, all
iread calls will return an even number of bytes, and all iwrite calls must
send an even number of bytes.

16-bit words are placed on the data lines using “big-endian” byte order (most
significant bit appears on data line D_15). Data alignment is automatically
adjusted for the native byte order of the computer. This is a programming
concern only if your program does its own packing of bytes into words.

This program segment is an iwrite example. An analogous situation
exists for iread.

/* System automatically handles byte order */
unsigned short words|[5];

/* Programmer assumes responsibility for byte order */
unsigned char bytes[10];

/* Using the GPIO interface in 16-bit mode */
igpiosetwidth (id, 16);

/* This call is platform-independent */
iwrite (id, words, 10, ...);

260 Chapter 9

SICL Language Reference
IGPIOSETWIDTH

/* This call is NOT platform-independent */
iwrite (id, bytes, 10, ...);

/* This sequence is platform-independent */
ibeswap (bytes, 10, 2);
iwrite(id, bytes, 10, ...);

There are several details about GPIO width. The “count” parameters for
iread and iwrite always specify bytes, even when the interface has a
16-bit width. For example, to send 100 words, specify 200 bytes. The
itermchr function always specifies an 8-bit character. If a 16-bit width is
set, only the lower 8 bits are used when checking for an itermchr match.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IGPIOGETWIDTH

Chapter 9 261

SICL Language Reference
IGPIOSTAT

IGPIOSTAT

Supported sessions: . ..

C Syntax
#include <sicl.h>
int igpiostat (id,

INST id;
int request;

............................... interface

request, result) ;

unsigned long *result;

Visual Basic Syntax

Function igpiostat
(ByVal id As Integer, ByVal request As Integer,
ByVal result As Long)

Description

GPIO is not supported over LAN. The igpiostat function is used to
determine the current state of various GPIO modes and lines. The request
parameter can be one of the following:

I_GPIO_CTRL

The result is a mask representing the state of all
control lines. The E2075 interface has two control
lines, so only the two least-significant bits have
meaning for that interface. These can be represented
by the following. All other bits in the result mask are
0 (zero).

I_GPIO_CTRL CTLO The CTLO line.
I_GPIO_CTRL CTL1l The CTL1 line.

262

Chapter 9

SICL Language Reference
IGPIOSTAT

I_GPIO_DATA

The result is a mask representing the state of all
data input latches. The E2075 interface has either
8 or 16 data in lines, depending on the setting
specified by igpiosetwidth.

This function reads the data lines asynchronously,
without any type of handshake. It is intended for
programs that implement their own handshake
explicitly.

An igpiostat function from one process will
proceed even if another process has a lock on the
interface. Ordinarily, this does not alter or disrupt any
hardware states. Reading the data in lines is one
exception.

A data read causes an “input” indication on the /O
line (pin 20). In rare cases, that change might be
unexpected, or undesirable, to the session that owns
the lock.

I_GPIO_INFO

The result is a mask representing the following
information about the device and the E2075 interface:

I_GPIO_PSTS

State of the PSTS line.

I_GPIO_EIR

State of the EIR line.

I_GPIO_READY

True if ready for a handshake. (Exact meaning
depends on the current handshake mode.)

I_GPIO_AUTO_HDSK

True if auto-handshake mode is enabled. False if
auto-handshake mode is disabled.

I_GPIO_CHK_PSTS

True if the PSTS line is to be checked before each
block of data is transferred. False if PSTS is to be
ignored during data transfers.

I_GPIO_ENH_MODE

True if the E2075 data ports are configured in
Enhanced (bi-directional) Mode. False if the ports
are configured in 98622 Compatibility Mode.

I_GPIO_READ EOI

The result is the value of the current END pattern
being used for read operations. If the result is
I_GPIO_EOI_NONE, no END pattern matching is
being used. Any other result is the value of the
END pattern.

Chapter 9

263

SICL Language Reference
IGPIOSTAT

I_GPIO_STAT The result is a mask representing the state of all
status lines. The E2075 interface has two status lines,
so only the two least-significant bits have meaning for
that interface. These can be represented by the
following. All other bits in the result mask are 0 (zero).
I_GPIO_STAT STIO The STIO line.
I_GPIO_STAT STI1 The STI1 line.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IGPIOCTRL, IGPIOSETWIDTH

264 Chapter 9

SICL Language Reference
IHINT

IHINT

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int ihint (id, hint);
INST id;
int hint;

Visual Basic Syntax

Function ihint
(ByVal id As Integer, ByVal hint As Integer)

Description

There are three common ways a driver can implement 1/O communications:
Direct Memory Access (DMA), Polling (POLL), and Interrupt Driven (INTR).
However, some systems may not implement all of these transfer methods.
The SICL software permits you to “recommend” your preferred method of
communication. To do this, use the ihint function. The hint argument can
be one of the following values:

I_HINT DONTCARE No preference.

I_HINT USEDMA Use DMA if possible and feasible. Otherwise use
POLL.

I_HINT USEPOLL Use POLL if possible and feasible. Otherwise use
DMA or INTR.

I_HINT USEINTR Use INTR if possible and feasible. Otherwise use
DMA or POLL.

I_HINT SYSTEM The driver should use whatever mechanism is best
suited for improving overall system performance.

I_HINT IO The driver should use whatever mechanism is best
suited for improving 1/0 performance.

Chapter 9 265

SICL Language Reference

IHINT

Some driver suggestions are:

DMA tends to be very fast at sending data but requires more time to
set up a transfer. It is best for sending large amounts of data in a
single request. Not all architectures and interfaces support DMA.

Polling tends to be fast at sending data and has a small set up time.
However, if the interface only accepts data at a slow rate, polling
wastes a lot of CPU time. Polling is best for sending smaller
amounts of data to fast interfaces.

Interrupt driven transfers tend to be slower than polling. It also has a
small set up time. The advantage to interrupts is that the CPU can
perform other functions while waiting for data transfers to complete.
This mechanism is best for sending small to medium amounts of
data to slow interfaces or interfaces with an inconsistent speed.

NOTE

The parameter passed in ihint is only a suggestion to the driver
software. The driver will still make its own determination of which
technique it will use. The choice has no effect on the operation of any
intrinsics, just on the performance characteristics of that operation.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IREAD, IWRITE, IFREAD, IFWRITE, IPRINTF, ISCANF

266

Chapter 9

SICL Language Reference
IINTROFF

IINTROFF
C Syntax

#include <sicl.h>

int iintroff ();
Description

This function is not supported on Visual Basic. The iintro££ function
disables SICL’s asynchronous events for a process. This means that all
installed handlers for any sessions in a process will be held off until the
process enables them with iintron.

By default, asynchronous events are enabled. However, the library will not
generate any events until the appropriate handlers are installed. To install
handlers, refer to the ionsrq and ionintr functions. The iintrof£f/
iintron functions do not affect the isetintr values or the handlers in any
way. The default is on.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IONINTR, IGETONINTR, IONSRQ, IGETONSRQ, IWAITHDLR, IINTRON

Chapter 9 267

SICL Language Reference
IINTRON

IINTRON
C Syntax

#include <sicl.h>

int iintron ();

Description

This function is not supported on Visual Basic. The iintron function
enables all asynchronous handlers for all sessions in the process. The
iintroff/iintron functions do not affect the isetintr values or the
handlers in any way. The default is on.

Callsto iintroff/iintron can be nested, meaning that there must be an
equal number of ons and offs. This means that calling the iintron function
may not actually enable interrupts again. For example, note how the
following code enables and disables events.

iintroff (); /* Events Disabled */
iintron () ; /* Events Enabled */
iintroff (); /* Events Disabled */
iintroff(); /* Events Disabled */
iintron(); /* Events STILL Disabled */
iintron(); /* Events NOW Enabled */

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONINTR, IGETONINTR, IONSRQ, IGETONSRQ, IWAITHDLR, IINTROFF,
ISETINTR

268 Chapter 9

SICL Language Reference
ILANGETTIMEOUT

ILANGETTIMEOUT

Supported sessions: interface

C Syntax
#include <sicl.h>
int ilangettimeout (id, tval);

INST id;
long *tval;

Visual Basic Syntax

Function ilangettimeout
(ByVal id As Integer, tval As Long) As Integer

Description

The ilangettimeout function stores the current LAN timeout value in
tval. If the LAN timeout value has not been set via ilantimeout, tval will
contain the LAN timeout value calculated by the system.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ILANTIMEOUT and Chapter 8 - Using SICL with LAN.

Chapter 9 269

SICL Language Reference
ILANTIMEOUT

ILANTIMEOUT

Supported sessions: interface

C Syntax

#include <sicl.h>

int ilantimeout (id, tval);
INST id;
long tval;

Visual Basic Syntax

Function ilantimeout
(ByVal id As Integer, ByVal tval As Long) As Integer

Description

The ilantimeout function sets the length of time that the application
(LAN client) will wait for a response from the LAN server. Once an
application has manually set the LAN timeout via this function, the software
will no longer attempt to determine the LAN timeout that should be used.
Instead, the software will use the value set via this function.

In this function, tval defines the timeout in milliseconds. A value of zero (0)
disables timeouts. The value 1 has special significance, causing the LAN
client to not wait for a response from the LAN server. However, the value 1
should be used in special circumstances only and should be used with
extreme caution. See “Using the No-Wait Value” for more information.

This function does not affect the SICL timeout value set via the itimeout
function. The LAN server will attempt the 1/O operation for the amount of
time specified via itimeout before returning a response.

If the SICL timeout used by the server is greater than the LAN timeout used
by the client, the client may timeout prior to the server, while the server
continues to service the request. This use of the two timeout values is not
recommended, since under this situation the server may send an unwanted
response to the client.

270 Chapter 9

Using the No-Wait
Value

SICL Language Reference
ILANTIMEOUT

NOTE

The ilantimeout function is per process. When ilantimeout is
called, all sessions going out over the network are affected.

Not all computer systems can guarantee an accuracy of one millisecond
on timeouts. Some computer clock systems only provide a resolution of
1/50th or 1/60th of a second. Other computers have a resolution of only
1 second. The time value is always rounded up to the next unit of
resolution.

A tval value of 1 has special significance to ilantimeout, causing the
LAN client to not wait for a response from the LAN server. For a very limited
number of cases, it may make sense to use this no-wait value.

One such scenario is when the performance of paired writes and reads over
a wide-area network (WAN) with long latency times is critical, and losing
status information from the write can be tolerated. Having the write (and only
the write) call not wait for a response allows the read call to proceed
immediately, potentially cutting the time required to perform the paired
WAN write/read in half.

CAUTION

This value should be used with great caution. If ilantimeout is set

to 1 and then is not reset for a subsequent call, the system may deadlock
due to responses being buffered which are never read, filling the buffers
on both the LAN client and server.

If the no-wait value is used in a multi-threaded application and multiple
threads are attempting I/O over the LAN, I/O operations using the no-wait
option will wait for access to the LAN for 2 minutes. If another thread is
using the LAN interface for greater than 2 minutes, the no-wait operation will
timeout.

Chapter 9 271

SICL Language Reference
ILANTIMEOUT

To use the no-wait value:

1.

Prior to the iwrite call (or any formatted I/O call that will write
data) that you do not want to block waiting for the returned status
from the server, call ilantimeout with a timeout value of 1.

Make the iwrite call. The iwrite call will return as soon as the
message is sent, not waiting for a reply. The iwrite call’s return
value will be I_ERR_TIMEOUT, and the reported count will be 0
(even though the data will be written, assuming no errors).

The server will send a reply to the write, even though the client
will discard it. There is no way to directly determine the success or
failure of the write, although a subsequent, functioning read call
can be a good sign.

Reset the client side timeout to a reasonable value for your
network by calling ilantimeout again with a value sufficiently
large enough to allow a read reply to be received. It is
recommended you use a value that provides some margin for
error. The timeout specified to ilantimeout is in milliseconds
(rounded up to the nearest second).

Make the blocking iread call (or formatted I/O call that will read
data). Since ilantimeout has been set to a value other than 1
(preferably not 0), the iread call will wait for a response from the
server for the specified time (rounded up to the nearest second).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
ILANGETTIMEOUT and Chapter 8 - Using SICL with LAN.

272

Chapter 9

SICL Language Reference

ILOCAL
ILOCAL
Supported SesSIONS: device
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int ilocal (d);
INST id;

Visual Basic Syntax

Function ilocal
(ByVal id As Integer)

Description

Use the ilocal function to put a device into Local Mode. Placing a device
in Local Mode enables the device’s front panel interface.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also

IREMOTE and the interface-specific chapter of this manual for details of
implementation.

Chapter 9 273

SICL Language Reference
ILOCK

ILOCK

Supported sessions: device, interface, commander
Affected by functions: L itimeout
C Syntax

#include <sicl.h>

int ilock (id);
INST id;

Visual Basic Syntax

Function ilock
(ByVal id As Integer)

Description

NOTE

Locks are not supported for LAN interface sessions, such as those
opened with:
lan_intf = iopen(™“lan”);

To lock a session, ensuring exclusive use of a resource, use the ilock
function. The id parameter refers to a device, interface, or commander
session. If id refers to an interface, the entire interface is locked and other
interfaces are not affected by this session.

If the id refers to a device or commander, only that device or commander is
locked and only that session may access that device or commander.
However, other devices on that interface or on other interfaces may be
accessed as usual.

Locks are implemented on a per-session basis. If a session within a given
process locks a device or interface, that device or interface is only
accessible from that session. It is not accessible from any other session
in this process, or in any other process.

Attempting to call a SICL function that obeys locks on a device or interface
that is locked will cause the call either to “hang” until the device or interface
is unlocked, to timeout or to return with the error I_ERR_LOCKED (see
isetlockwait).

274 Chapter 9

SICL Language Reference
ILOCK

B Locking an interface (from an interface session) restricts other
device and interface sessions from accessing this interface.

B Locking a device restricts other device sessions from accessing this
device. However, other interface sessions may continue to use this
interface.

B |ocking a commander (from a commander session) restricts other
commander sessions from accessing this controller. However,
interface sessions may continue to use this interface.

NOTE

Locking an interface does lock out all device session accesses on that
interface, such as iwrite (dev2,...), as well as all other SICL
interface session accesses on that interface. Locks can be nested.
So, every ilock requires a matching iunlock.

If iclose is called (either implicitly by exiting the process, or explicitly)
for a session that currently has a lock, the lock will be released.

This C example will cause the device session to “hang”.

intf = iopen (“hpib”);
dev = iopen (“hpib,7”);

ilock (intf);
ilock (dev); /* this will succeed */
iwrite (dev, “*CLS”, 4, 1, 0); /* this will hang */

This Visual Basic example will cause the device session to “hang”.

intf = iopen (“hpib”)
dev = iopen (“hpib, 77)

call ilock (intf)
call ilock (dev) ‘" this will succeed
call iwrite(dev, “*CLS”, 4, 1, 0&) ' this will hang

Chapter 9 275

SICL Language Reference
ILOCK

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IUNLOCK, ISETLOCKWAIT, IGETLOCKWAIT

276 Chapter 9

SICL Language Reference

IMAP
IMAP
Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout
C Syntax

#include <sicl.h>

char *imap (id, map_space, pagestart, pagecnt, suggested) ;
INST id;

int map_space;

unsigned int pagestart;

unsigned int pagecnt;

char *suggested;

Visual Basic Syntax

Function imap

(Byval id As Integer, ByVal mapspace As Integer,
ByVal pagestart As Integer, ByVal pagecnt As Integer,
ByVal suggested As Long) As Long

Description

NOTE

This function is not recommended for new program development.
Use IMAPX instead. This function is not supported over LAN.

The imap function maps a memory space into the process space. The SICL
i?peek and i?poke functions can then be used to read and write to VXI
address space.

The id argument specifies a VXI interface or device. The pagestart argument
indicates the page number within the given memory space where the
memory mapping starts. The pagecnt argument indicates how many pages
to use. For Visual Basic, you must specify 1 for the pagecnt argument.

Chapter 9 277

SICL Language Reference
IMAP

The map_space argument contains one of the following values:

I_MAP Al6 Map in VXI A16 address space (64 Kbyte pages).

I_MAP A24 Map in VXI A24 address space (64 Kbyte pages).

I_MAP A32 Map in VXI A32 address space (64 Kbyte pages).

I_MAP VXIDEV Map in VXI device registers. (Device session only, 64
bytes.)

I_MAP_EXTEND Map in VXI Device Extended Memory address space in

A24 or A32 address space. See individual device manuals
for details regarding extended memory address space.
(Device session only.)

I_MAP SHARED Map in VXI A24/A32 memory that is physically located on
this device (sometimes called local shared memory). If the
hardware supports it (that is, the local shared VXI memory
is dual-ported), this map should be through the local
system bus and not through the VXI memory.

This mapping mechanism provides an alternate way of
accessing local VXI memory without having to go through
the normal VXI memory system. The value of pagestart is
the offset (in 64 Kbyte pages) into the shared memory. The
value of pagecnt is the amount of memory (in 64 Kbyte
pages) to map.

NOTE

The E1489 MXIlbus Controller Interface can generate 32-bit data reads
and writes to VXIbus devices with D32 capability. To use 32-bit transfers
with the E1489, use I_MAP Al6 D32, I_MAP A24 D32, and
I_MAP A32 D32 inplace of I_MAP _Al6, I_MAP_ A24, and
I_MAP_A32 when mapping to D32 devices.

The suggested argument, if non-NULL, contains a suggested address to
begin mapping memory. However, the function may not always use this
suggested address. For Visual Basic, you must pass a 0 (zero) for this
argument.

278 Chapter 9

SICL Language Reference
IMAP

After memory is mapped, it may be accessed directly. Since this function
returns a C pointer, you can also use C pointer arithmetic to manipulate the
pointer and access memory directly. Accidentally accessing non-existent
memory will cause bus errors.

Due to hardware constraints on a given device or interface, not all address
spaces may be implemented. In addition, there may be a maximum number
of pages that can be simultaneously mapped. If a request is made that
cannot be granted due to hardware constraints, the process will hang until
the desired resources become available. To avoid this, use the
isetlockwait command with the flag parameter set to 0, and thus
generate an error instead of waiting for the resources to become available.

You can also use the imapinfo function to determine hardware constraints
before making an imap call. Remember to iunmap a memory space when
you no longer need it. The resources may be needed by another process.

See the Agilent SICL User’s Guide for HP-UX for an example of trapping
bus errors. Or, see your operating system’s programming information for
help in trapping bus errors. You may find this information under the
command signal in your operating system’s manuals. Visual Basic
programs can perform pointer arithmetic within a single page.

Return Value

For C programs, this function returns a zero (0) if an error occurs or a non-
zero number if successful. This non-zero number is the address to begin
mapping memory. For Visual Basic programs, no error number is returned.
Instead, the global Exr variable is set if an error occurs.

See Also
IUNMAP, IMAPINFO

Chapter 9 279

SICL Language Reference
IMAPX

IMAPX

Supported sessions: device, interface, commander
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

unsigned long imapx (id, mapspace, pagestart, pagecnt) ;
INST id;
int mapspace;
unsigned int pagestart;
unsigned int pagecnt;

Visual Basic Syntax

Function imapx
ByVal id As Integer, ByVal mapspace As Integer,
ByVal pagestart As Integer, ByVal pagecnt As Integer)

Description

This function is not supported over LAN. The imapx function returns an
unsigned long number, used in other functions, that maps a memory space
into the process space. The SICL ipeek?x and ipoke?x functions can
then be used to read and write to VXI address space.

The id argument specifies a VXl interface or device. The pagestart argument
indicates the page number within the given memory space where the
memory mapping starts. The pagecnt argument indicates how many pages
to use. For Visual Basic, you must specify 1 for the pagecnt argument.

The map_space argument contains one of the following values:

I _MAP Al6 Map in VXI A16 address space (64 Kbyte pages).

I_MAP A24 Map in VXI A24 address space (64 Kbyte pages).

I_MAP A32 Map in VXI A32 address space (64 Kbyte pages).

I_MAP VXIDEV Map in VXI device registers. (Device session only, 64
bytes.)

280 Chapter 9

SICL Language Reference
IMAPX

I_MAP_EXTEND Map in VXI Device Extended Memory address space in
A24 or A32 address space. See individual device manuals
for details regarding extended memory address space.
(Device session only.)

I_MAP SHARED Map in VXI A24/A32 memory that is physically located on
this device (sometimes called local shared memory). If the
hardware supports it (that is, the local shared VXI memory
is dual-ported), this map should be through the local
system bus and not through the VXI memory.

This mapping mechanism provides an alternate way of
accessing local VXI memory without having to go through
the normal VXI memory system. The value of pagestart is
the offset (in 64 Kbyte pages) into the shared memory. The
value of pagecnt is the amount of memory (in 64 Kbyte
pages) to map.

NOTE

The E1489 MXIlbus Controller Interface can generate 32-bit data reads
and writes to VXIbus devices with D32 capability. To use 32-bit transfers
with the E1489, use I_MAP_Al16_ D32, I_MAP_A24 D32, and
I_MAP A32 D32 inplace of I_MAP _Al6, I_MAP_A24, and

I_MAP A32 when mapping to D32 devices.

Depending on what iderefptr returns, memory may be accessed directly.
Since this function returns a C pointer, you can also use C pointer arithmetic
to manipulate the pointer and access memory directly. Accidentally
accessing non-existent memory will cause bus errors.

Due to hardware constraints on a given device or interface, not all address
spaces may be implemented. In addition, there may be a maximum number
of pages that can be simultaneously mapped. If a request is made that
cannot be granted due to hardware constraints, the process will hang until
the desired resources become available.

To avoid this, use the isetlockwait command with the flag parameter
set to 0, and thus generate an error instead of waiting for the resources to
become available. You may also use the imapinfo function to determine
hardware constraints before making an imap call.

Chapter 9 281

SICL Language Reference
IMAPX

Remember to iunmapx a memory space when you no longer need it. The
resources may be needed by another process.

See the Agilent SICL User’s Guide for HP-UX for an example of trapping bus
errors. Or, see your operating system’s programming information for help in
trapping bus errors. You can find this information under the command
signal in your operating system’s manuals. Visual Basic programs can
perform pointer arithmetic within a single page.

Return Value

For C programs, this function returns a zero (0) if an error occurs or a non-
zero number if successful. This non-zero number is either a handle or the
address to begin mapping memory. Use the iderefptr function to
determine whether the returned handle is a valid address or a handle.

For Visual Basic programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also
IUNMAPX, IMAPINFO, IDEREFPTR

282 Chapter 9

SICL Language Reference
IMAPINFO

IMAPINFO

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int imapinfo (id, map_space, numwindows, winsize) ;
INST id;

int map_space;

int *numwindows;

int *winsize;

Visual Basic Syntax

Function imapinfo
(ByVal id As Integer, ByVal mapspace As Integer,
numwindows As Integer, winsize As Integer)

Description

This function is not supported over LAN. To determine hardware constraints
on memory mappings imposed by a particular interface, use the imapinfo
function. The id argument specifies a VXI interface. The numwindows
argument is filled in with the total number of windows available in the
address space. The winsize argument is filled in with the size of the
windows in pages. The map_space argument specifies the address space.
Valid values for map_space are:

I_MAP_Al6 VXI A16 address space (64 Kbyte pages).
I_MAP A24 VXI A24 address space (64 Kbyte pages).
I_MAP A32 VXI A32 address space (64 Kbyte pages).

Hardware design constraints may prevent some devices or interfaces from
implementing all of the various address spaces. Also, there may be a limit
to the number of pages that can simultaneously be mapped for usage. In
addition, some resources may already be in use and locked by another
process.

Chapter 9 283

SICL Language Reference
IMAPINFO

If resource constraints prevent a mapping request, the imap function will
“hang”, waiting for the resources to become available. Remember to unmap
a memory space when you no longer need it. The resources may be needed
by another process.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IMAP, IUNMAP

284 Chapter 9

SICL Language Reference
IONERROR

IONERROR
C Syntax

#include <sicl.h>
int ionerror (proc);
void (*proc) (id, error);

INST id;
int error;

Description

NOTE

For Visual Basic, error handlers are installed using the Visual Basic
On Error statement. See Chapter 3 - Programming with SICL for more
information on error handling with Visual Basic.

The ionerror function is used to install a SICL error handler. Many SICL
functions can generate an error. When a SICL function errors, it typically
returns a special value such as a NULL pointer, zero, or a non-zero error
code. A process can specify a procedure to execute when a SICL error
occurs. This allows your process to ignore the return value and permit the
error handler to detect errors and do the appropriate action.

The error handler procedure executes immediately before the SICL function
that generated the error completes its operation. There is only one error
handler for a given process that handles all errors that occur with any
session established by that process.

On operating systems that support multiple threads, the error handler is

still per-process. However, the error handler will be called in the context of
the thread that caused the error. Error handlers are called with the following
arguments, where the id argument indicates the session that generated the
error and the error argument indicates the error that occurred. See Appendix
B - Troubleshooting SICL Programs for a description of the error codes.

void proc (id, error);
INST id;
int error;

Chapter 9 285

SICL Language Reference
IONERROR

The INST id passed to the error handler is the same INST id that was
passed to the function that generated the error. Therefore, if an error
occurred because of an invalid INST jd, the INST id passed to the error
handler is also invalid. Also, if iopen generates an error before a session
has been established, the error handler will be passed a zero (0) INST id.

Two special reserved values of proc can be passed to the ionerror
procedure. If a zero (0) is passed as the value of proc, it will remove the
error handler. The error procedure could perform a setimp/longjmp or an
escape using the try/recover clauses.

I_ERROR _EXIT This value installs a special error handler which logs a
diagnostic message and terminates the process.

I_ERROR NO_EXIT This value also installs a special error handler which
logs a diagnostic message but does not terminate the
process.

Example for using setimpl/longjmp:

#include <sicl.h>

INST id;
jmp buf env;
void proc (INST,int) {
/* Error occurred, perform a longjmp */
longjmp (env, 1);

void xyzzy () {
if (setjmp (env) == 0) {
/* Normal code */
ionerror (proc);

/* Do actions that could cause errors */

iwrite (.......) ;
iread (........) ;
...etc...

ionerror (0);
} else {
/* Error Code */
ionerror (0);
do error processing
if (igeterrno () ==...)

286 Chapter 9

SICL Language Reference
IONERROR

. etc ...;

}
Or, using try/recoveri/escape:

#include <sicl.h>

INST id;

void proc (INST id, int error) {
/* Error occurred, perform an escape */
escape (id);
}
void xyzzy () {
try {
/* Normal code */
ionerror (proc);

/* Do actions that could cause errors */
iwrite (.......) ;

iread (........) ;

...etc...

ionerror (0);
} recover {
/* Error Code */
ionerror (0);
. do error processing ...
if (igeterrno () == ...)
. etc ...;

}
Return Value

This function returns zero (0) if successful or a non-zero error number if
an error occurs.

See Also

IGETONERROR, IGETERRNO, IGETERRSTR, ICAUSEERR

Chapter 9 287

SICL Language Reference
IONINTR

IONINTR

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int ionintr (id, proc) ;

INST id;
void (*proc) (id, reason, secval);
INST id;

long reason;
long secval;

Description

This function is not supported on Visual Basic.The library can notify a
process when an interrupt occurs by using the ionintr function. This
function installs the procedure proc as an interrupt handler. To remove the
interrupt handler, pass a zero (0) in the proc parameter. By default, no
interrupt handler is installed.

After you install the interrupt handler with ionintr, use the isetintr
function to enable notification of the interrupt event or events. The library
calls the proc procedure whenever an enabled interrupt occurs. It calls
proc with the following parameters:

id The INST that refers to the session that installed the
interrupt handler.

reason Contains a value that corresponds to the reason for the
interrupt. These values correspond to the isetintr
function parameter intnum.

secval Contains a secondary value that depends on the type of
interrupt which occurred. For I_INTR TRIG, it contains
a bit mask corresponding to the trigger lines that fired.
For interface-dependent and device-dependent
interrupts, contains an appropriate value for that
interrupt.

288 Chapter 9

SICL Language Reference
IONINTR

The reason parameter specifies the cause for the interrupt. Valid reason
values for all interface sessions are:

I_INTR INTFACT Interface became active.
I_INTR INTFDEACT Interface became deactivated.
I_INTR TRIG A Trigger occurred. The secval parameter contains a

bit-mask specifying which triggers caused the
interrupt. See the ixtrig function’s which
parameter for a list of valid values.

I_INTR * Individual interfaces may use other interface-
interrupt conditions.

Valid reason values for all device sessions are:

I_INTR * Individual interfaces may include other interface-
interrupt conditions.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

ISETINTR, IGETONINTR, IWAITHDLR, IINTROFF, IINTRON for protecting
I/O calls against interrupts.

Chapter 9 289

SICL Language Reference
IONSRQ

IONSRQ

Supported sessions: device, interface

C Syntax

#include <sicl.h>

int ionsrqg (id, proc);
INST id;

void (*proc) (id) ;
INST id;

Description

This function is not supported on Visual Basic. Use the ionsrq function
to notify an application when an SRQ occurs. This function installs the
procedure proc as an SRQ handler. To remove an SRQ handler, pass a
zero (0) as the proc parameter.

An SRQ handler is called any time its corresponding interface generates an
SRQ. If an interface device driver receives an SRQ and cannot determine
the generating device (for example, on GPIB), it passes the SRQ to all
SRQ handlers assigned to the interface.

Therefore, an SRQ handler cannot assume that its corresponding device
actually generated an SRQ. An SRQ handler should use the ireadstb
function to determine whether its corresponding device generated the SRQ.
It calls proc with the following parameters:

void proc (id);
INST id;

Return Value

This function returns zero (0) if successful or a non-zero error number if
an error occurs.

See Also
IGETONSRQ, IWAITHDLR, IINTROFF, IINTRON, IREADSTB

290 Chapter 9

Creating A Device
Session

SICL Language Reference
IOPEN

IOPEN

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

INST iopen (addr);
char *addr

Visual Basic Syntax

Function iopen
(ByVal addr As String)

Description

Before using any of the SICL functions, the application program must
establish a session with the desired interface or device. Create a session
using the iopen function. This function creates a session and returns a
session identifier. The session identifier should only be passed as a
parameter to other SICL functions. It is not designed to be updated
manually.

The addr parameter contains the device, interface, or commander address.
An application may have multiple sessions open at the same time by
creating multiple session identifiers with the iopen function. If an error
handler has been installed (see ionerror) and an iopen generates an
error before a session has been established, the handler will be called with
the session identifier set to zero (0).

Caution must be used if using the session identifier in an error handler.
Also, it is possible for an iopen to succeed on a device that does not exist.
In this case, other functions (such as iread) will fail with a nonexistent
device error.

To create a device session, specify a particular interface name followed by
the device’s address in the addr parameter. For more information on
addressing devices, see Chapter 3 - Programming with SICL.

Chapter 9 291

SICL Language Reference
IOPEN

C example:

INST dmm;
dmm = iopen (“hpib,15”);

Visual Basic example:

DIM dmm As Integer
dmm = iopen (“hpib,15”)

Creating An To create an interface session, specify a particular interface in the addr
Interface Session parameter. For more information on addressing interfaces, see Chapter 3 -
Programming with SICL.

C example:

INST hpib;
hpib = iopen (“hpib”);

Visual Basic example:

DIM hpib As Integer
hpib = iopen (“hpib”)

Creating A To create a commander session, use the keyword emdr in the addr
Commander parameter. For more information on commander sessions, see
Session Chapter 3 - Programming with SICL.
C example:
INST cmdr;
cmdr = iopen (“hpib,cmdr”);

Visual Basic example:

DIM cmdr As Integer
cmdr = iopen (“hpib, cmdr”)

Return Value

The iopen function returns a zero (0) id value if an error occurs.
Otherwise, a valid session id is returned.

See Also
ICLOSE

292 Chapter 9

SICL Language Reference
IPEEK

IPEEK
C Syntax

#include <sicl.h>

unsigned char ibpeek (addr);
unsigned char *addr;

unsigned short iwpeek (addr);
unsigned short *addr;

unsigned long ilpeek (addr);
unsigned long *addr;

Visual Basic Syntax
Function ibpeek

(ByVal addr As Long) As Byte

Function iwpeek
(Byval addr As Long) As Integer

Function ilpeek
(ByVal addr As Long) As Long

Description

This function is not recommended for new program development. Use
IPEEKX8, IPEEKX16, or IPEEKX32 instead. This function is not supported
over LAN.

The i?peek functions will read the value stored at addr from memory and
return the result. The i?peek functions are generally used in conjunction
with the SICL imap function to read data from VXI address space.

The iwpeek and ilpeek functions perform byte swapping (if necessary)
so that VXI memory accesses follow correct VXI byte ordering. If a bus error
occurs, unexpected results may occur.

See Also
IPOKE, IMAP

Chapter 9 293

SICL Language Reference
IPEEKXS, IPEEKX16, IPEEKX32

IPEEKXS8, IPEEKX16, IPEEKX32
C Syntax

#include <sicl.h>

int ipeekx8 (id, handle, offset, *value) ;
INST id;
unsigned long handle;
unsigned long offset;
unsigned char *value;

int ipeekx16 (id, handle, offset, *value) ;
INST id;
unsigned long handle;
unsigned long offset;
unsigned short *value

int ipeekx32 (id, handle, offset, *value) ;
INST id;
unsigned long handle;
unsigned long offset;
unsigned long *value))

Visual Basic Syntax

Function ipeekx8
(Byval id As Integer, ByVal handle As Long,
ByVal offset as Long, ByVal value As Integer)

(syntax is the same for ipeekx16 and ipeekx32)

Description

This function is not supported over LAN. The ipeekx8, ipeekx16,

and ipeekx32 functions read the values stored at handle and offset from
memory and returns the value from that address. These functions are
generally used in conjunction with the SICL imapx function to read data
from VXI address space. The ipeekx8 and ipeekx16 functions perform
byte swapping (if necessary) so that VXI memory accesses follow correct
VXI byte ordering. If a bus error occurs, unexpected results may occur.

See Also
IPOKEXS, IPOKEX16, IPOKEX32, IMAPX

294 Chapter 9

SICL Language Reference
IPOKE

IPOKE
C Syntax

#include <sicl.h>

void ibpoke (addr, val) ;

unsigned char *addr;
unsigned char val;

void iwpoke (addr, val) ;

unsigned short *addr;
unsigned short val;

void ilpoke (addr, val) ;

unsigned long *addr;
unsigned long val;

Visual Basic Syntax

Sub ibpoke
(ByVal addr As Long,

Sub iwpoke
(ByVal addr As Long,

Sub ilpoke

ByVal value As Integer)

ByVal value As Integer)

(Byval addr As Long, ByVal value As Long)

Description

This function is not recommended for new program development. Use
IPOKEX8, IPOKEX16, or IPOKEX32 instead. This function is not
supported over LAN. The i?poke functions will write to memory. The
i?poke functions are generally used in conjunction with the SICL
imap function to write to VXI address space. addr is a valid memory

address. val is a valid data value.

The iwpoke and ilpoke functions perform byte swapping (if necessary)
so that VXI memory accesses follow correct VXI byte ordering. If a bus

error occurs, unexpected results may occur.

See Also
IPEEK, IMAP

Chapter 9

295

SICL Language Reference
IPOKEXS, IPOKEX16, IPOKEX32

IPOKEXS, IPOKEX16, IPOKEX32
C Syntax

#include <sicl.h>

int ipokex8 (id, handle, offset, value) ;
INST id;
unsigned long handle;
unsigned long offset;
unsigned char value;

int ipokex16 (id, handle, offset, value) ;
INST id;
unsigned long handle;
unsigned long offset;
unsigned short value;

int ipokex32 (id, handle, offset, value) ;
INST id;
unsigned long handle;
unsigned long offset;
unsigned long value;

Visual Basic Syntax

Sub ipokex8

(ByVal id As Integer, ByVal handle As Long,
ByVal offset as Long, ByVal value As Integer)
(syntax is the same for ipokexl16 and ipokex32.)

Description

This function is not supported over LAN. The ipokex8, ipokex16, and
ipokex32 functions write to memory. The functions are generally used in
conjunction with the SICL imapx function to write to VXI address space.
handle is a valid memory address, offset is a valid memory offset. val is a
valid data value. The ipokex16 and ipokex32 functions perform byte
swapping (if necessary) so that VXI memory accesses follow correct VXI
byte ordering. If a bus error occurs, unexpected results may occur.

See Also
IPEEKXS8, IPEEKX16, IPEEKX32, IMAPX

296 Chapter 9

SICL Language Reference
IPOPFIFO

IPOPFIFO
C Syntax

#include <sicl.h>

int ibpopfifo
INST id;

unsigned char
unsigned char
unsigned long

int iwpopfifo
INST id;

unsigned char
unsigned char

(id, fifo, dest, cnt);
*fifo;
*dest;
cnt;

(id, fifo, dest, cnt, swap) ;
*fifo;

*dest;

unsigned long cnt;

int swap;

int ilpopfifo (id, fifo, dest, cnt,
INST id;
unsigned char
unsigned char
unsigned long

int swap;

swap) ;

*fifo;
*dest;
cnt;

Visual Basic Syntax

Function ibpopfifo
(Byval id As Integer, ByVal fifo As Long,
ByVal dest As Long, ByVal cnt As Long)

Function iwpopfifo

(Byval id As Integer, ByVal fifo As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As Integer)

Function ilpopfifo

(ByVal id As Integer, ByVal fifo As Long,
ByVval dest As Long, ByVal cnt As Long,
ByVal swap As Integer)

Chapter 9 297

SICL Language Reference
IPOPFIFO

Description

This function is not supported over LAN. The i?pop£fifo functions read
data from a FIFO and puts data in memory. Use b for byte, w for word,

and 1 for long word (8-bit, 16-bit, and 32-bit, respectively). These functions
increment the write address, to write successive memory locations, while
reading from a single memory (FIFO) location. Thus, these functions can
transfer entire blocks of data.

The id, although specified, is normally ignored except to determine an
interface-specific transfer mechanism such as DMA. To prevent using an
interface-specific mechanism, pass a zero (0) in this parameter.

The dest argument is the starting memory address for the destination data.
The fifo argument is the memory address for the source FIFO register data.
The cnt argument is the number of transfers (bytes, words, or longwords) to
perform.

The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero, the function swaps bytes (if necessary) to
change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering. If a bus error occurs, unexpected results may
occur.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IPEEK, IPOKE, IPUSHFIFO, IMAP

298 Chapter 9

SICL Language Reference
IPRINTF

IPRINTF

Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int iprintf (id, format [,arg1][,arg2]11[,...1);
int isprintf (buf, format [,arg1]1[,arg211[,..1);
int ivprintf (id, format, va_listap) ;

int isvprintf (buf, format, va listap) ;

INST id;

char *buf;

const char *format;

param arg1, arg2, ...;

va_list ap;

Visual Basic Syntax

Function ivprintf
(ByVal id As Integer, ByVal fmt As String,
ByVal ap As Any)

Description

These functions convert data under the control of the format string. The
format string specifies how the argument is converted before it is output.

If the first argument is an INST, data are sent to the device to which the
INST refers. If the first argument is a character buffer, data are placed in the
buffer.

The format string contains regular characters and special conversion
sequences. The iprintf£ function sends the regular characters (not a %
character) in the format string directly to the device. Conversion
specifications are introduced by the % character. Conversion specifications
control the type, the conversion, and the formatting of the arg parameters.

NOTE

The formatted I/O functions, iprintf and iprompt£, can re-address
the bus multiple times during execution. This behavior may cause
problems with instruments that do not comply with IEEE 488.2.

Chapter 9 299

Restrictions Using
ivprint£ in
Visual Basic

SICL Language Reference
IPRINTF

Re-addressing occurs under the following circumstances. This behavior
affects only non-IEEE 488.2 devices on the GPIB interface. Use the special
characters and conversion commands explained later in this section to
create the format string’s contents.:

B After the internal buffer fills. (See isetbuf.)

B When a \n is found in the format string in C/C++ or when a
Chr$ (10) is found in the format string in Visual Basic.

B When a %C is found in the format string.

Format Conversion Commands: Only one format conversion command can
be specified in a format string for ivprint£ (a format conversion command
begins with the % character). For example, the following is invalid:

nargs% = ivprintf (id, “%1£%d” + Chr$(10), ...)
Instead, you must call ivprint£ once for each format conversion
command, as shown in the following example:

nargs% = ivprintf (id, “$1f” + Chr$(10), dbl value)
nargs% = ivprintf (id, “%d” + Chr$(10), int value)

Writing Numeric Arrays: For Visual Basic, when writing from a numeric array
with ivprintf£, you must specify the first element of a numeric array as the
ap parameter to ivprint£. This passes the address of the first array
element to ivprint£. For example:

Dim flt array(50) As Double
nargs% = ivprintf (id, “%,50f”, dbl array(0))

This code declares an array of 50 floating point numbers and then calls
ivprintf to write from the array. For more information on passing numeric
arrays as arguments with Visual Basic, see the “Arrays” section of the
“Calling Procedures in DLLs” chapter of the Visual Basic Programmer’s
Guide.

Writing Strings: The %S format string is not supported for ivprintf on
Visual Basic.

300 Chapter 9

SICL Language Reference
IPRINTF

Special Characters Special characters in C/C++ consist of a backslash (\) followed by another

for C/C++ character. The special characters are:
\n Send the ASCII LF character with the END indicator set.
\r Send the ASCII CR character.
\\ Send the backslash (\) character.
\t Send the ASCII TAB character.
\### Send the ASCII character specified by the octal value #i#4#.
\v Send the ASCII VERTICAL TAB character.
\f Send the ASCII FORM FEED character.
\" Send the ASCII double-quote (") character.

Special Characters Special characters in Visual Basic are specified with the CHR$ () function.
for Visual Basic These special characters are added to the format string by using the + string
concatenation operator in Visual Basic. For example:

nargs=ivprintf (id, “*RST”+CHRS (10), 0&)
The special characters are:

Chrs$ (10) Send the ASCII LF character with the END indicator set.
Chrs$ (13) Send the ASCII CR character.

\ Sends the backslash (\) character.’

Chr$ (9) Send the ASCII TAB character.

Chr$ (11) Send the ASCII VERTICAL TAB character.

Chr$ (12) Send the ASCIlI FORM FEED character.

Chrs$ (34) Send the ASCII double-quote (") character.

1. In Visual Basic, the backslash character can be specified in a format
string directly, instead of being “escaped” by prepending it with another
backslash.

Chapter 9 301

SICL Language Reference
IPRINTF

Format Conversion An iprintf format conversion command begins with a ¢ character. After

Commands the % character, the optional modifiers appear in this order: format flags, field
width, a period and precision, a comma and array size (comma operator),
and an argument modifier. The command ends with a conversion character.

conv

e L . .]
format field " array argument
O

Modifiers in a conversion command are:

format flags Zero or more flags (in any order) that modify the
meaning of the conversion character. See the following
subsection, “List of format flags” for the specific flags
you may use.

field width An optional minimum field width is an integer (such as
“%8d"). If the formatted data has fewer characters than
field width, it will be padded. The padded character is
dependent on various flags.

In C/C++, an asterisk (*) may appear for the integer,
in which case it will take another arg to satisfy this
conversion command. The next arg will be an integer
that will be the field width (for example, iprintf (id,
“g*d”, 8, num)).

302 Chapter 9

SICL Language Reference
IPRINTF

. precision

The precision operator is an integer preceded by a
period (such as “%.6d"”). The optional precision for
conversion characters e, E, and £ specifies the number
of digits to the right of the decimal point.

For the 4, i, o, u, %, and X conversion characters, it
specifies the minimum number of digits to appear. For
the s and s conversion characters, the precision
specifies the maximum number of characters to be read
from your arg string.

In C/C++, an asterisk (*) may appear in the place of the
integer, in which case it will take another arg to satisfy
this conversion command. The next arg will be an
integer that will be the precision (for example,
iprintf (id, “%.*d”, 6, num)).

, array size

The comma operator is an integer preceded by a
comma (such as “%,10d”). The optional comma
operator is only valid for conversion characters d and £.
This is a comma followed by a number.

This indicates a list of comma-separated numbers is to
be generated. The argument is an array of the specified
type instead of the type (that is, an array of integers
instead of an integer).

In C/C++, an asterisk (*) may appear for the number, in
which case it will take another arg to satisfy this
conversion command. The next arg will be an integer
that is the number of elements in the array.

argument modifier

The meaning of the modifiers h, 1, w, z, and Z is
dependent on the conversion character (such as
“gwd”).

conv char

A conversion character is a character that specifies the
type of arg and the conversion to be applied. This is the
only required element of a conversion command. See
the following subsection, “List of conv chars” for the
specific conversion characters you may use.

Chapter 9

303

SICL Language Reference

IPRINTF

Examples of Format Some examples follow of conversion commands used in the format string
and the output that would result from them. (The output data is arbitrary.)

Conversion
Commands

List of format flags

Conversion Output Description
Command

$QHd #H3A41 format flag

%$10s str field width

%$-10s str format flag (left justify) & field width
%.6f 21.560000 precision

%,3d 18,31,34 comma operator

$61d 132 field width & argument modifier (long)
%$.61d 000132 precision & argument modifier (long)
%$@1d 61 format flag (IEEE 488.2 NR1)

%@2d 61.000000 format flag (IEEE 488.2 NR2)

%$@3d 6.100000E+01 format flag (IEEE 488.2 NR3)

format flags you can use in conversion commands are:

@1

Convert to an NR1 number (an IEEE 488.2 format integer with no
decimal point). Valid only for $d and $£. % £ values will be truncated
to the integer value.

@2

Convert to an NR2 number (an IEEE 488.2 format floating point
number with at least one digit to the right of the decimal point).
Valid only for $d and $£.

@3

Convert to an NR3 number (an IEEE 488.2 format number
expressed in exponential notation). Valid only for $d and % £.

@H

Convert to an IEEE 488.2 format hexadecimal number in the form
#Hxxxx. Valid only for $d and $£. $£ values will be truncated to the
integer value.

@Q

Convert to an IEEE 488.2 format octal number in the form #Qxxxx.
Valid only for $d and %£. $£ values will be truncated to the integer
value.

304

Chapter 9

List of conv chars

SICL Language Reference
IPRINTF

@B

Convert to an IEEE 488.2 format binary number in the form #Bxxxx.
Valid only for $d and $£. $£ values will be truncated to the integer
value.

Left justify the result.

Prefix the result with a sign (+ or -) if the output is a signed type.

space

Prefix the result with a blank () if the output is signed and positive.
Ignored if both blank and + are specified.

Use alternate form. For the o conversion, it prints a leading zero. For
x or X, a non-zero will have 0x or 0X as a prefix. For e, E, £, g, and
G, the result will always have one digit on the right of the decimal
point.

Will cause the left pad character to be a zero (0) for all numeric
conversion types.

conv chars (conversion characters) you can use in conversion commands

are:

Corresponding arg is an integer. If no flags are given, send the
number in IEEE 488.2 NR1 (integer) format. If flags indicate an
NR2 (floating point) or NR3 (floating point) format, convert the
argument to a floating point number.

This argument supports all six flag modifier formatting options:
NR1-@1, NR2 - @2, NR3 - @3, @H, QQ, or @B. If the 1 argument
modifier is present, the arg must be a long integer. If the h
argument modifier is present, the arg must be a short integer for
C/C++ or an Integer for Visual Basic.

Corresponding arg is a double for C/C++, or a Double for Visual
Basic. If no flags are given, send the number in IEEE 488.2 NR2
(floating point) format. If flags indicate that NR1 format is to be
used, the arg will be truncated to an integer.

This argument supports all six flag modifier formatting options:
NR1-@1, NR2 - @2, NR3 - @3, @H, QQ, or @B. If the 1 argument
modifier is present, the arg must be a double. If the L argument
modifier is present, the arg must be a long double for C/C++ (not
supported for Visual Basic).

Chapter 9

305

SICL Language Reference

IPRINTF

In C/C++, corresponding arg is a pointer to an arbitrary block of
data. (Not supported in Visual Basic.) The data is sent as IEEE
488.2 Definite Length Arbitrary Block Response Data. The field
width must be present and will specify the number of elements in
the data block.

An asterisk (*) can be used in place of the integer, which indicates
that two args are used. The first is a long used to specify the
number of elements. The second is the pointer to the data block.
No byte swapping is performed.

If the w argument modifier is present, the block of data is an array
of unsigned short integers. The data block is sent to the device as
an array of words (16 bits). The field width value now corresponds
to the number of short integers, not bytes. Each word will be
appropriately byte swapped and padded so that they are
converted from the internal computer format to the standard IEEE
488.2 format.

If the 1 argument modifier is present, the block of data is an array
of unsigned long integers. The data block is sent to the device as
an array of longwords (32 bits). The field width value now
corresponds to the number of long integers, not bytes. Each word
will be appropriately byte swapped and padded so that they are
converted from the internal computer format to the standard IEEE
488.2 format.

If the z argument modifier is present, the block of data is an array
of floats. The data is sent to the device as an array of 32-bit IEEE
754 format floating point numbers. The field width is the number of
floats.

If the Z argument modifier is present, the block of data is an array
of doubles. The data is sent to the device as an array of 64-bit
IEEE 754 format floating point numbers. The field width is the
number of doubles.

Same as b in C/C++, except that the data block is sent as IEEE
488.2 Indefinite Length Arbitrary Block Response Data. (Not
supported in Visual Basic.) Note that this format involves sending
a newline with an END indicator on the last byte of the data block.

In C/C++, corresponding arg is a character. (Not supported in
Visual Basic.)

In C/C++, corresponding arg is a character. Send with END
indicator. (Not supported in Visual Basic.)

306

Chapter 9

SICL Language Reference
IPRINTF

In C/C++, control sending the END indicator with each LF
character in the format string. (Not supported in Visual Basic.) A +
flag indicates to send an END with each succeeding LF character
(default), a - flag indicates to not send END. If no + or - flag
appears, an error is generated.

Corresponding arg is a pointer to a null-terminated string that is
sent as a string.

In C/C++, corresponding arg is a pointer to a null-terminated string
that is sent as an IEEE 488.2 string response data block. (Not
supported in Visual Basic.) An |IEEE 488.2 string response data
block consists of a leading double quote (") followed by non-
double quote characters and terminated with a double quote.

Send the ASCII percent (%) character.

Corresponding arg is an integer. Same as d except that the six flag
modifier formatting options: NR1 - @1, NR2 - @2, NR3 - @3, @H, QQ,
or @B are ignored.

o,u,x,X

Corresponding arg will be treated as an unsigned integer. The
argument is converted to an unsigned octal (o), unsigned decimal
(u), or unsigned hexadecimal (x,X). The letters abcdef are used
with %, and the letters ABCDEF are used with X.

The precision specifies the minimum number of characters to
appear. If the value can be represented with fewer than precision
digits, leading zeros are added. If the precision is set to zero and
the value is zero, no characters are printed.

Corresponding arg is a double in C/C++, or a Double in Visual
Basic. The argument is converted to exponential format (that is, [-
1d.dddde+/-dd). The precision specifies the number of digits to
the right of the decimal point. If no precision is specified, six digits
will be converted. The letter e will be used with e and the letter E
will be used with E.

Corresponding arg is a double in C/C++, or a Double in Visual
Basic. The argument is converted to exponential (e with g, or E
with G) or floating point format depending on the value of the arg
and the precision. The exponential style will be used if the
resulting exponent is less than -4 or greater than the precision;
otherwise it will be printed as a float.

Chapter 9

307

Buffers and Errors

SICL Language Reference

IPRINTF
n Corresponding arg is a pointer to an integer in C/C++, or an
Integer for Visual Basic. The number of bytes written to the device
for the entire iprint£ call is written to the arg. No argument is
converted.
F On HP-UX or Windows NT/2000, corresponding arg is a pointer to

a FILE descriptor. (Not supported on Windows 95/98/Me.) The
data will be read from the file that the FILE descriptor points to and
written to the device. The FILE descriptor must be opened for
reading. No flags or modifiers are allowed with this conversion
character.

Since iprintf does not return an error code and data is buffered before it
is sent, it cannot be assumed that the device received any data after the
iprintf has completed. The best way to detect errors is to install your own
error handler. This handler can decide the best action to take depending on
the error that has occurred.

If an error has occurred during an iprintf£ with no error handler installed,
the only way you can be informed that an error has occurred is to use
igeterrno right after the iprintf call.

iprintf can be called many times without any data being flushed to the
session. There are only three conditions where the write formatted 1/O buffer
is flushed. Those conditions are:

B If a newline is encountered in the format string.
W If the buffer is filled.
B If iflush is called with the I_BUF_WRITE value.

If an error occurs while writing data, such as a timeout, the buffer will be
flushed (that is, data will be lost). If an error handler is installed, it will
be called or the error number will be set to the appropriate value.

Return Value

This function returns the total number of arguments converted by the format
string.

See Also
ISCANF, IPROMPTF, IFLUSH, ISETBUF, ISETUBUF, IFREAD, IFWRITE

308 Chapter 9

SICL Language Reference

IPROMPTF
IPROMPTF
Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout
C Syntax
#include <sicl.h>
int ipromptf (id, writefmt, readfmt[, arg11([, arg2][, ..1);:

int ivpromptf (id, writefmt, readfmt, va_listap) ;
INST id;

const char *writefmt;

const char *readfmt;

param argtl,arg2,...;

va_list ap;

Description

This function is not supported on Visual Basic. The ipromptf£ function is
used to perform a formatted write immediately followed by a formatted read.
This function is a combination of the iprintf and iscanf functions.

First, it flushes the read buffer. Next, it formats a string using the writefmt
string and the first n arguments necessary to implement the prompt string.
The write buffer is then flushed to the device. Then, it then uses the readfmt
string to read data from the device and to format it appropriately.

The writefmt string is identical to the format string used for the iprintf
function. The readfmt string is identical to the format string used for the
iscanf function. It uses the arguments immediately following those
needed to satisfy the writefmt string. This function returns the total number
of arguments used by both the read and write format strings.

See Also
IPRINTF, ISCANF, IFLUSH, ISETBUF, ISETUBUF, IFREAD, IFWRITE

Chapter 9 309

SICL Language Reference
IPUSHFIFO

IPUSHFIFO
C Syntax

#include <sicl.h>

int ibpushfifo (id, src, fifo,
INST id;

unsigned char *src;
unsigned char *fifo;
unsigned long cnt;

int iwpushfifo (id, src, fifo,
INST id;

unsigned short *sSrc;
unsigned short *fifo;
unsigned long cnt;

int swap;

int ilpushfifo (id, src, fifo,
INST id;

unsigned long *Src;
unsigned long *fifo;
unsigned long cnt;

int swap;

Visual Basic Syntax

Function ibpushfifo

cnt) ;

cnt,

cnt,

swap) ;

swap) ;

(Byval id As Integer, ByVal Src As Long,
Byval fifo As Long, ByVal cnt As Long)

Function iwpushfifo

(ByVal id As Integer, ByVal src As Long,
ByVal fifo As Long, ByVal cnt As Long,

ByVal swap As Integer)

Function ilpushfifo

(ByVal id As Integer, ByVal Src As Long,
Byval fifo As Long, ByVal cnt As Long,

ByVal swap As Integer)

310

Chapter 9

SICL Language Reference
IPUSHFIFO

Description

This function is not supported over LAN. The i?push£fifo functions copy
data from memory on one device to a FIFO on another device. Use b for
byte, w for word, and 1 for long word (8-bit, 16-bit, and 32-bit, respectively).
These functions increment the read address to read successive memory
locations while writing to a single memory (FIFO) location. Thus, they can
transfer entire blocks of data.

The id, although specified, is normally ignored except to determine an
interface-specific transfer mechanism such as DMA. To prevent using an
interface-specific mechanism, pass a zero (0) in this parameter.

The src argument is the starting memory address for the source data. The
fifo argument is the memory address for the destination FIFO register data.
The cnt argument is the number of transfers (bytes, words, or longwords) to
perform.

The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero the function swaps bytes (if necessary) to
change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering. If a bus error occurs, unexpected results may
occur.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IPOPFIFO, IPOKE, IPEEK, IMAP

Chapter 9 31

SICL Language Reference
IREAD

IREAD

Supported sessions: device, interface, commander
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int iread (id, buf, bufsize, reason, actualcnt) ;
INST id;

char *buf;

unsigned long bufsize;

int *reason;

unsigned long *actualcnt;

Visual Basic Syntax

Function iread

(Byval id As Integer, buf As String,
ByVal bufsize As Long, reason As Integer,
actual As Long)

Description

This function reads raw data from the device or interface specified by id.
The buf argument is a pointer to the location where the block of data can be
stored. The bufsize argument is an unsigned long integer containing the
size, in bytes, of the buffer specified in buf.

The reason argument is a pointer to an integer that, on exiting the iread
call, contains the reason why the read terminated. If the reason parameter
contains a zero (0), no termination reason is returned. Reasons include:

I_TERM MAXCNT bufsize characters read.
I_TERM END END indicator received on last character.
I_TERM CHR Termination character enabled and received.

The actualcnt argument is a pointer to an unsigned long integer. Upon exit,
this contains the actual number of bytes read from the device or interface.
If the actualcnt parameter is NULL, the number of bytes read will not be
returned.

312 Chapter 9

SICL Language Reference
IREAD

To pass a NULL reason or actualcnt parameter to iread in Visual Basic,
use the expression 0&. For LAN, if the client times out prior to the server
the actualcnt returned will be 0, even though the server may have read some
data from the device or interface.

This function reads data from the specified device or interface and stores it
in buf up to the maximum number of bytes allowed by bufsize. The read
terminates only on one of the following conditions:

B |t reads bufsize number of bytes.

B It receives a byte with the END indicator attached.

B |t receives the current termination character (set with termchr).
B An error occurs.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IWRITE, ITERMCHR, IFREAD, IFWRITE

Chapter 9 313

SICL Language Reference
IREADSTB

IREADSTB

Supported SesSioNs: device
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int ireadstb (id, stb);
INST id;
unsigned char *stb;

Visual Basic Syntax

Function ireadstb
(ByVal id As Integer, Stb As String)

Description

The ireadstb function reads the status byte from the device specified by
id. The stb argument is a pointer to a variable which will contain the status
byte upon exit.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IONSRQ, ISETSTB

314 Chapter 9

SICL Language Reference

IREMOTE
IREMOTE
Supported SesSIONS: device
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int iremote (id);
INST id;

Visual Basic Syntax

Function iremote
(ByVal id As Integer)

Description

Use the iremote function to put a device into remote mode. Placing a
device in remote mode disables the device’s front panel interface.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also

ILOCAL and the interface-specific chapter in this manual for details of
implementation.

Chapter 9 315

SICL Language Reference
ISCANF

ISCANF

Supported sessions: device, interface, commander

Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int iscanf (id, format [,arg1][,arg2]1[,..]1);

int isscanf (buf, format [,arg1][,arg2]1[,...1);

int ivscanf (id, format, va list ap) ;

int isvscanf (buf, format, va_listap) ;

INST id;

char *buf;

const char *format;

ptr

arg1, arg2, ...;

va_list ap;

Visual Basic Syntax

Function ivscanf
(ByVal id As Integer, ByVal fmt As String,
ByRef ap As Any)

Description

These functions read formatted data, convert the data, and store the results
into args. These functions read bytes from the specified device or from buf
and convert them using conversion rules contained in the format string. The
number of args converted is returned. The format string contains:

White-space characters, which are spaces, tabs, or special
characters. Use the white-space characters and conversion
commands to create the format string’s contents.

An ordinary character (not %), which must match the next
non-white-space character read from the device.

Format conversion commands.

316

Chapter 9

Notes on Using
iscanf

SICL Language Reference
ISCANF

Using itermchr with iscanf. The iscanf function only terminates
reading on an END indicator or the termination character specified by
itermchar.

Using iscanf with Certain Instruments. The iscanf function cannot be
used easily with instruments that do not send an END indicator.

Buffer Management with iscanf. By default, iscanf does not flush its internal
buffer after each call. This means data left from one call of iscan£f can be
read with the next call to iscan£. One side effect of this is that successive
calls to iscanf may yield unexpected results. For example, reading the
following data:

“1.25\r\n”
“1.35\r\n”
“1.45\r\n”

with:

iscanf (id, “%1f”, &resl); /* Will read the 1.25 */
iscanf (id, “%1f”, &res2); /* Will read the \r\n */
iscanf (id, “%1f”, &res3); /* Will read the 1.35 */

There are four ways to get the desired results:

1. Use the newline and carriage return characters at the end of the
format string to match the input data. This is the recommended
approach. For example:

iscanf (id, “%1f%\r\n”, &resl);
iscanf (id, “%1f%\r\n”, &res2);
iscanf (id, “%1f%\r\n”, &res3);

2. Use isetbuf with a negative buffer size. This will create a buffer
the size of the absolute value of bufsize. This also sets a flag that
tells iscanf to flush its buffer after every iscanf call.

isetbuf (id, I BUF READ, -128);
3. Do explicit calls to 1£1ush to flush the read buffer.

iscanf (id, “%1f”, &resl);
iflush (id, I BUF READ);
iscanf (id, “%1f”, &res?2);
iflush (id, I BUF READ);
iscanf (id, “%1f”, &res3);

Chapter 9 317

Restrictions Using
ivscanf
in Visual Basic

SICL Language Reference
ISCANF

iflush (id, I_BUF_READ);

4. Use the $*t conversion to read to the end of the buffer and
discard the characters read, if the last character has an END
indicator.

iscanf (id, “%1f%*t”, &resl);
iscanf (id, “%$1f%*t”, &res2);
iscanf (id, “%1f%*t”, &res3);

Format Conversion Commands. Only one format conversion command can
be specified in a format string for ivscanf (a format conversion command
begins with the % character). For example, the following is invalid:

nargs% = ivscanf (id, “%,501f%,50d”, ...)

Instead, you must call ivscanf once for each format conversion command,
as shown in the following valid example:

nargs% = ivscanf (id, “%,501f”, dbl array(0))
nargs% = ivscanf (id, “%,50d”, int array(0))

Reading in Numeric Arrays. For Visual Basic, when reading into a numeric
array with ivscan£, you must specify the first element of a numeric array
as the ap parameter to ivscanf. This passes the address of the first array
element to ivscanf. For example:

Dim preamble (50) As Double
nargs% = ivscanf (id, “%,501f”, preamble (0))

This code declares an array of 50 floating point numbers and then calls
ivscanf to read into the array. For more information on passing numeric
arrays as arguments with Visual Basic, see the “Arrays” section of the
“Calling Procedures in DLLs” chapter of the Visual Basic Programmer’s
Guide.

Reading in Strings. For Visual Basic, when reading in a string value with
ivscanf, you must pass a fixed length string as the ap parameter to
ivscanf. For more information on fixed length strings with Visual Basic,
see the “String Types” section of the “Variables, Constants, and Data Types’
chapter of the Visual Basic Programmer’s Guide.

318 Chapter 9

White-Space
Characters for
C/C++

White-Space
Characters for
Visual Basic

Format Conversion
Commands

SICL Language Reference
ISCANF

White-space characters are spaces, tabs, or special characters. For C/C++,
the white-space characters consist of a backslash (\) followed by another
character. The white-space characters are:

\t The ASCII TAB character

\v The ASCII VERTICAL TAB character
\f The ASCII FORM FEED character
space The ASCII space character

White-space characters are spaces, tabs, or special characters. For Visual
Basic, the white-space characters are specified with the Chr$ () function.
The white-space characters are:

Chrs$ (9) The ASCII TAB character
Chr$(11) The ASCII VERTICAL TAB character
Chr$(12) The ASCII FORM FEED character
space The ASCII space character

An iscanf format conversion command begins with a $ character. After
the % character, the optional modifiers appear in this order: an assignment
suppression character (*), field width, a comma and array size (comma
operator), and an argument modifier. The command ends with a conversion
character.

| conv

@ L | char
. field ,@_,{ array argument
width size modifier

Chapter 9 319

SICL Language Reference
ISCANF

The modifiers in a conversion command are:

* An optional, assignment suppression character (*). This
provides a way to describe an input field to be skipped. An input
field is defined as a string of non-white-space characters that
extends either to the next inappropriate character, or until the
field width (if specified) is exhausted.

field width An optional integer representing the field width. In

C/C++, if a pound sign (#) appears instead of the integer, the
next arg is a pointer to the field width. This arg is a pointer to an
integer for $c, %s, %t, and %S. This arg is a pointer to a long for
$b. The field width is not allowed for %d or $£.

, array size An optional comma operator is an integer preceded by a
comma. It reads a list of comma-separated numbers. The
comma operator is in the form of ,dd, where dd is the number
of array elements to read. In C/C++, a pound sign (#) can be
substituted for the number, in which case the next argumentis a
pointer to an integer that is the number of elements in the array.

The function will set this to the number of elements read. This
operator is only valid with the conversion characters d and £.
The argument must be an array of the type specified.

argument The meaning of the optional argument modifiers h, 1, w, z, and
modifier Z is dependent on the conversion character.
conv char A conversion character is a character that specifies the type of

arg and the conversion to be applied. This is the only required
element of a conversion command. See the following
subsection, “List of conv chars” for the specific conversion
characters you may use.

Unlike C’s scanf function, SICL’s iscanf functions do not treat the newline
(\n) and carriage return (\r) characters as white-space. Therefore, they are
treated as ordinary characters and must match input characters. (This does
not apply in Visual Basic.)

The conversion commands direct the assignment of the next arg. The
iscanf function places the converted input in the corresponding variable,
unless the * assignment suppression character causes it to use no arg and
to ignore the input. This function ignores all white-space characters in the
input stream.

320 Chapter 9

SICL Language Reference
ISCANF

Examples of Format Examples of conversion commands used in the format string and typical
input data that would satisfy the conversion commands follow

Conversion
Commands

List of conv chars

Conversion Input Data Description
Command
$*s onestring suppression (no assignment)
$*s %s two strings suppression (two) assignment (strings)
%,3d 21,12,61 comma operator
$hd 64 argument modifier (short)
%$10s onestring field width
%$10c onestring field width
%10t two strings field width (10 chars read into 1 arg)

The conv chars (conversion characters) are:

d

Corresponding arg must be a pointer to an integer for C/C++ or an
Integer in Visual Basic. The library reads characters until an entire
number is read. It will convert IEEE 488.2 HEX, OCT, BIN, and

NRf format numbers.

If the 1 (ell) argument modifier is used, the argument must be a
pointer to a long integer in C/C++ or it must be a Long in Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to a short integer for C/C++ or an Integer for Visual Basic.

Corresponding arg must be a pointer to an integer in C/C++ or an
Integer in Visual Basic. The library reads characters until an entire
number is read. If the number has a leading zero (0), the number
will be converted as an octal number. If the data has a leading 0x
or 0X, the number will be converted as a hexadecimal number.

If the 1 (ell) argument modifier is used, the argument must be a
pointer to a long integer in C/C++ or it must be a Long for Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to a short integer for C/C++ or an Integer for Visual Basic.

Chapter 9

321

SICL Language Reference
ISCANF

£ Corresponding arg must be a pointer to a float in C/C++ or a Single
in Visual Basic. The library reads characters until an entire number
is read. It will convert IEEE 488.2 HEX, OCT, BIN, and NRf format
numbers.

If the 1 (ell) argument modifier is used, the argument must be a
pointer to a double for C/C++ or it must be a Double for Visual
Basic. If the L. argument modifier is used, the argument must be a
pointer to a long double for C/C++ (not supported for Visual Basic).

e,g Corresponding arg must be a pointer to a float for C/C++ or a
Single for Visual Basic. The library reads characters until an entire
number is read. If the 1 (ell) argument modifier is used, the
argument must be a pointer to a double for C/C++ or a Double for
Visual Basic. If the L. argument modifier is used, the argument
must be a pointer to a long double for C/C++ (not supported for
Visual Basic).

c Corresponding arg is a pointer to a character sequence for
C/C++ or a fixed length String for Visual Basic. Reads the number
of characters specified by field width (default is 1) from the device
into the buffer pointed to by arg. White-space is not ignored with
%$c. No null character is added to the end of the string.

s Corresponding arg is a pointer to a string for C/C++ or a fixed
length String for Visual Basic. All leading white-space characters
are ignored, all characters from the device are read into a string
until a white-space character is read. An optional field width
indicates the maximum length of the string. You should specify the
maximum field width of the buffer being used to prevent overflows.

S Corresponding arg is a pointer to a string for C/C++, or a fixed
length String for Visual Basic. This data is received as an IEEE
488.2 string response data block. The resultant string will not have
the enclosing double quotes in it. An optional field width indicates
the maximum length of the string. You should specify the
maximum field width of the buffer being used to prevent overflows.

t Corresponding arg is a pointer to a string for C/C++, or a fixed
length String for Visual Basic. Read all characters from the device
into a string until an END indicator is read. An optional field width
indicates the maximum length of the string. All characters read
beyond the maximum length are ignored until the END indicator is
received. You should specify the maximum field width of the buffer
being used to prevent overflows.

322 Chapter 9

SICL Language Reference
ISCANF

Corresponding arg is a pointer to a buffer. This conversion code
reads an array of data from the device. The data must be in IEEE
488.2 Arbitrary Block Program Data format. Depending on the
structure of the data, data may be read until an END indicator is
read.

The field width must be present to specify the maximum number of
elements the buffer can hold. For C/C++ programs, the field width
can be a pound sign (#). If the field width is a pound sign, two
arguments are used to fulfill this conversion type.

The first argument is a pointer to a long that will be used as the
field width. The second will be the pointer to the buffer that will hold
the data. After this conversion is satisfied, the field width pointer is
assigned the number of elements read into the buffer. This is a
convenient way to determine the actual number of elements read
into the buffer.

If there is more data than will fit into the buffer, extra data is lost.

If no argument modifier is specified, the array is assumed to be an
array of bytes.

If the w argument modifier is specified, the array is assumed to be
an array of short integers (16 bits). The data read from the device
is byte swapped and padded as necessary to convert from IEEE
488.2 byte ordering (big endian) to the native ordering of the
controller. The field width is the number of words.

If the 1 (ell) argument modifier is specified, the array is assumed to
be an array of long integers (32 bits). The data read from the
device is byte swapped and padded as necessary to convert from
IEEE 488.2 byte ordering (big endian) to the native ordering of the
controller. The field width is the number of long words.

If the z argument modifier is specified, the array is assumed to be
an array of floats. The data read from the device is an array of 32
bit IEEE-754 floating point numbers. The field width is the number
of floats.

If the 2z argument modifier is specified, the array is assumed to be
an array of doubles. The data read from the device is an array of
64 bit IEEE-754 floating point numbers. The field width is the
number of doubles.

Chapter 9

323

SICL Language Reference
ISCANF

o Corresponding arg must be a pointer to an unsigned integer for
C/C++ or an Integer for Visual Basic. The library reads characters
until the entire octal number is read.

If the 1 (ell) argument modifier is used, the argument must be a
pointer to an unsigned long integer for C/C++ or a Long for Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to an unsigned short integer for C/C++ or the argument
must be an Integer for Visual Basic.

u Corresponding arg must be a pointer to an unsigned integer for
C/C++ or an Integer for Visual Basic. The library reads characters
until an entire number is read. It will accept any valid decimal
number.

If the 1 (ell) argument modifier is used, the argument must be a
pointer to an unsigned long integer for C/C++ or a Long for Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to an unsigned short integer for C/C++ or the argument
must be an Integer for Visual Basic.

x Corresponding arg must be a pointer to an unsigned integer for
C/C++ or an Integer for Visual Basic. The library reads characters
until an entire number is read. It will accept any valid hexadecimal
number.

If the 1 (ell) argument modifier is used, the argument must be a
pointer to an unsigned long integer for C/C++ or a Long for Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to an unsigned short integer for C/C++ or it must be an
Integer for Visual Basic.

[Corresponding arg must be a character pointer for C/C++ or a
fixed length character String for Visual Basic. The [conversion
type matches a non-empty sequence of characters from a set of
expected characters. The characters between the [and the] are
the scanlist.

The scanset is the set of characters that match the scanlist, unless
the circumflex (*) is specified. If the circumflex is specified, the
scanset is the set of characters that do not match the scanlist.
The circumflex must be the first character after the [. Otherwise,
it will be added to the scanlist.

324 Chapter 9

SICL Language Reference
ISCANF

[The - can be used to build a scanlist. It means to include all
characters between the two characters in which it appears (for
example, $ [a-z] means to match all the lower case letters
between and including a and z). If the - appears at the beginning
or the end of conversion string, - is added to the scanlist.

n Corresponding arg is a pointer to an integer for C/C++, or it is an
Integer for Visual Basic. The number of bytes currently converted
from the device is placed into the arg. No argument is converted.

F Supported on HP-UX only. (Not supported on Windows
95/98/Me/2000/NT.) Corresponding arg is a pointer to a FILE
descriptor. The input data read from the device is written to the file
referred to by the FILE descriptor until the END indicator is
received. The file must be opened for writing. No other modifiers or
flags are valid with this conversion character.

Data Conversions This table lists types of data that each numeric format accepts. Conversion
types i and d and types £ and e,g are not the same.

d IEEE 488.2 HEX, OCT, BIN, and NRf formats (for example, #HA,
#012, #B1010, 10,10.00, and 1.00E+01).

£ IEEE 488.2 HEX, OCT, BIN, and NRf formats (for example, #HA,
#0012, #81010, 10,10.00, and 1.00E+01).

i Integer. Data with a leading 0 will be converted as octal. Data with
leading 0x or 0x will be converted as hexadecimal.

u Unsigned integer. Same as i except value is unsigned.

o Unsigned integer. Data will be converted as octal.

x,X Unsigned integer. Data will be converted as hexadecimal.

e,g Floating. Integers, floating point, and exponential numbers will be

converted into floating point numbers (default is float).

Return Value

Returns the total number of arguments converted by the format string.

See Also
IPRINTF, IPROMPTF, IFLUSH, ISETBUF, ISETUBUF, IFREAD, IFWRITE

Chapter 9 325

SICL Language Reference
ISERIALBREAK

ISERIALBREAK

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int iserialbreak (id);
INST id;

Visual Basic Syntax

Function iserialbreak
(ByVal id As Integer)

Description

The iserialbreak function is used to send a BREAK on the interface
specified by id.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

326 Chapter 9

SICL Language Reference

ISERIALCTRL
ISERIALCTRL
Supported sessions: interface
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int iserialctrl

INST id;
int request;

unsigned long setting;

Visual Basic Syntax

Function iserialctrl

(id, request, setting) ;

(ByVal id As Integer, ByVal request As Integer,
ByVal sefting As Long)

Description

The iserialctrl function sets up the serial interface for data exchange.
This function takes request (one of the following values) and sets the
interface to the setting. The following are valid values for request:

I_SERIAL_BAUD

The sefting parameter will be the new speed of
the interface. The value should be a valid baud
rate for the interface (for example, 300, 1200,
9600). The baud rate is represented as an
unsigned long integer, in bits per second.

If the value is not a recognizable baud rate, an
err_param error is returned. Supported baud
rates are: 50, 110, 300, 600, 1200, 2400, 4800,
7200, 9600, 19200, 38400, and 57600.

I_SERIAL PARITY

These are acceptable values for setting:
I_SERIAL PAR EVEN Even parity
I_SERIAL PAR _ODD Odd parity
I_SERIAL PAR NONE No parity bit is used
I_SERIAL PAR MARK Parity is always one
I_SERIAL PAR SPACE Parity is always zero

Chapter 9

327

SICL Language Reference
ISERIALCTRL

I_SERIAL_STOP Acceptable values for setting are:
I_SERIAL STOP_1 1 stop bit
I_SERIAL STOP_2 2 stop bits

I_SERIAL WIDTH Acceptable values for setting are:

I_SERIAL CHAR 5 5 bit characters
I_SERIAL CHAR 6 6 bit characters
I_SERIAL CHAR 7 7 bit characters
I_SERIAL CHAR 8 8 bit characters

I_SERIAL_READ BUFSZ Sets the size of the read buffer. The setting
parameter is used as the size of buffer to use.
This value must be in the range of 1 and 32767.

I_SERIAL WRITE_BUFSZ The result parameter will be set to the current
size of the write buffer.

I_SERIAL DUPLEX Acceptable values for setting are:
I_SERIAL DUPLEX_ FULL Use full duplex
I_SERIAL DUPLEX HALF Use half duplex

I_SERIAL FLOW_CTRL The setting parameter must be set to one of the
following values. If no flow control is to be used,
set setting to zero (0). Supported types of flow
control are:

I_SERIAL FLOW _NONE No handshaking
I_SERIAL FLOW_XON Software handshaking
I_SERIAL FLOW_RTS_CTS Hardware
handshaking

I_SERIAL_FLOW_DTR DSR Hardware
handshaking

I_SERIAL READ EOI Sets the type of END Indicator to use for reads.

For iscanf to work as specified, data must be
terminated with an END indicator. The RS-232
interface has no standard way of doing this. SICL
provides two different methods of indicating EOI.

The first method is to use a character with a
value between 0 and 0xff. Whenever this value
is encountered in aread (iread, iscanf, or
ipromptf), the read will terminate and the term
reason will include I_TERM END. The default
for serial is the newline character (\n).

328 Chapter 9

SICL Language Reference
ISERIALCTRL

I_SERIAL_READ EOI
(cont)

The second method is to use bit 7 (if numbered
0-7) of the data as the END indicator. The data

would be bits 0 through 6 and, when bit 7 is set,
means EOI. Valid values for the setting are:

I_SERIAL_EOI_CHR|(n) - A characteris
used to indicate EOI, where n is the
character. This is the default type and
\n is used.

I_SERIAL_EOI_NONE - No EOI
indicator.

I_SERIAL EOI_BITS8 - Use the eighth
bit of the data to indicate EOI. On the last
byte, the eighth bit will be masked off, and
the result will be placed into the buffer.

I_SERIAL_ WRITE_ EOI

The setting parameter will contain the value of
the type of END Indicator to use for writes. The
following are valid values:

I_SERIAL EOI_NONE - No EOI
indicator. This is the default for
I_SERIAL WRITE (iprintf).

I_SERIAL EOI_BITS8 - Use the eighth
bit of the data to indicate EOI. On the last
byte, the eighth bit will be masked off and
the result will be placed into the buffer.

I_SERIAL RESET

This will reset the serial interface, any pending
writes will be aborted, the data in the input buffer
will be discarded, and any error conditions will be
reset. This differs from iclear in that no BREAK
will be sent.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs.For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ISERIALSTAT

Chapter 9

329

SICL Language Reference
ISERIALMCLCTRL

ISERIALMCLCTRL

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int iserialmclctrl (id, sline, state) ;
INST id;

int sline;

int state;

Visual Basic Syntax

Function iserialmclctrl
(ByVal id As Integer, ByVal sline As Integer,
ByVal state As Integer)

Description

The iserialmeclctrl function is used to control the Modem Control Lines.
The sline parameter sends one of the following values:

I_SERIAL_RTS Ready To Send line
I_SERIAL DTR Data Terminal Ready line

If the state value is non-zero, the Modem Control Line will be asserted.
Otherwise, it will be cleared.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ISERIALMCLSTAT, IONINTR, ISETINTR

330 Chapter 9

SICL Language Reference

ISERIALMCLSTAT
ISERIALMCLSTAT
Supported sessions: interface
Affected by functions: L. ilock, itimeout

C Syntax
#include <sicl.h>
int iserialmclstat (id, sline, state) ;
INST id;

int sline;
int *state;

Visual Basic Syntax

Function iserialmclstat
(ByVal id As Integer, ByVal sline As Integer,
state As Integer)

Description

The iserialmclstat function is used to determine the current state of the
Modem Control Lines. The sline parameter sends one of the following
values:

I_SERIAL_RTS Ready To Send line
I_SERIAL_ DTR Data Terminal Ready line

If the value returned in state is non-zero, the Modem Control Line is
asserted. Otherwise, it is clear.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ISERIALMCLCTRL

Chapter 9 331

SICL Language Reference
ISERIALSTAT

ISERIALSTAT

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int iserialstat (id, request, result);
INST id;

int request;

unsigned long *result;

Visual Basic Syntax

Function iserialstat
(ByVal id As Integer, ByVal request As Integer,
result As Long)

Description

The iserialstat function finds the status of the serial interface. This
function takes one of the following values passed in request and returns the
status in the result parameter:

I_SERIAL BAUD The result parameter will be set to the speed of
the interface.

I_SERIAL PARITY The result parameter will be set to one of the

following values:
I_SERIAL_PAR EVEN Even parity
I_SERIAL_PAR ODD Odd parity
I_SERIAL_PAR NONE No parity bitis used
I_SERIAL PAR MARK Parity is always one
I_SERIAL PAR SPACE Parity is always
zero

I_SERIAL_STOP The result parameter will be set to one of the
following values:
I_SERIAL_STOP_1 1stop bits
I_SERIAL_STOP_2 2 stop bits

332 Chapter 9

SICL Language Reference
ISERIALSTAT

I_SERIAL WIDTH

The result parameter will be set to one of the

following values:
I_SERIAL CHAR 5 5 bit characters
I_SERIAL CHAR 6 6 bit characters
I_SERIAL CHAR 7 7 bit characters
I_SERIAL_CHAR 8 8 bit characters

I_SERIAL DUPLEX

The result parameter will be set to one of the
following values:
I_SERIAL_DUPLEX FULL Use full duplex
I_SERIAL_DUPLEX HALF Use half duplex

I_SERIAL MSL

The result parameter will be set to the bit-wise
OR of all of Modem Status Lines that are
currently being asserted.

The value of the result parameter will be the
logical OR of all of serial lines currently being
asserted. The serial lines are the Modem
Control Lines and the Modem Status Lines.
Supported serial lines are:

I_SERIAL_DCD - Data Carrier Detect.
I_SERIAL DSR - Data Set Ready.
I_SERIAL_CTS - Clear To Send.
I_SERIAL RI - Ring Indicator.
I_SERIAL_TERI - Trailing Edge of RI.
I_SERIAL D DCD - The DCD line has

changed since the last time this status
has been checked.
I_SERIAL D DSR-The DSRIine has
changed since the last time this status
has been checked.
I_SERIAL D CTS - The CTS line has
changed since the last time this status
has been checked.

Chapter 9

333

SICL Language Reference
ISERIALSTAT

I_SERIAL_ STAT

This is a read destructive status, since reading
this request resets the condition. The result
parameter will be set the bit-wise OR of the
following conditions:

M I SERIAL DAV - Data is available.

B I SERIAL PARERR - Parity error
has occurred since the last time the
status was checked.

B I SERIAL OVERFLOW - Overflow
error has occurred since the last time
the status was checked.

B I SERIAL FRAMING - Framing
error has occurred since the last time
the status was checked.

B I SERIAL BREAK - Break has been
received since the last time the
status was checked.

B I SERIAL TEMT - Transmitter
empty.

I_SERIAL_READ BUFSZ

The result parameter will be set to the current
size of the read buffer.

I_SERIAL_WRITE_ BUFSZ

The result parameter will be set to the current
size of the write buffer.

I_SERIAL_READ DAV

The result parameter will be set to the current
amount of data available for reading.

I_SERIAL_FLOW_CTRL

The result parameter will be set to the value of
the current type of flow control that the interface
is using. If no flow control is being used, result
will be set to zero (0). Supported types of flow
control are:
H I __SERIAL_ FLOW_NONE No
handshakmg
B I SERIAL FLOW_XON Software
handshaking
m I __SERIAL_FLOW_RTS_ CTS
Hardware handshakmg
m I __SERIAL FLOW_DTR DSR
Hardware handshaklng

334

Chapter 9

SICL Language Reference
ISERIALSTAT

I_SERIAL READ EOI

The result parameter will be set to the value of
the current type of END indicator that is being
used for reads. These values can be returned:

I_SERIAL_EOI_CHR|(n) - A character is
used to indicate EOI, where n is the
character. These two values are logically
OR-ed together. To find the value of the
character, AND result with 0xff. The
default is a \n.

I_SERIAL_EOI_NONE - No EOI
indicator. This is the default for
I_SERIAL_READ (iscanf).
I_SERIAL_EOI_BITS8 - Use the eighth
bit of the data to indicate EOI. This last
byte will mask off this bit and use the rest
for the data that is put in your buffer.

I_SERIAL_ WRITE_ EOI

The result parameter will be set to the value of
the current type of END indicator that is being
used for reads. These values can be returned:

I_SERIAL EOI_NONE - No EOI
indicator. This is the default for
I_SERIAL WRITE (iprintf).
I_SERIAL EOI_BITS8 - Use the eighth
bit of the data to indicate EOI. This last
byte will mask off this bit and use the rest
for the data that is put in your buffer.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ISERIALCTRL

Chapter 9

335

SICL Language Reference
ISETBUF

ISETBUF

Supported sessions: device, interface, commander
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int isetbuf (id, mask, size);
INST id;

int mask;

int size;

Description

This function is not supported on Visual Basic. isetbuf sets the size and
actions of the read and/or write buffers of formatted 1/0. The mask can be
one or the bit-wise OR of both of the following flags:

I_BUF_READ Specifies the read buffer.
I_BUF _WRITE Specifies the write buffer.

The size argument specifies the size of the read or write buffer (or both) in
bytes. Setting a size of zero (0) disables buffering. For write buffers, each
byte goes directly to the device. For read buffers, the driver reads each byte
directly from the device.

Setting a size greater than zero creates a buffer of the specified size. For
write buffers, the buffer flushes (writes to the device) whenever the buffer
fills up and for each newline character in the format string. (However, the
buffer is not flushed by newline characters in the argument list.) For read
buffers, the buffer is never flushed and holds any leftover data for the next
iscanf/ipromptf£ call. This is the default action.

Setting a size less than zero creates a buffer of the absolute value of the
specified size. For write buffers, the buffer flushes (writes to the device)
whenever the buffer fills up for each newline character in the format string or
at the completion of every iprint£ call. For read buffers, the buffer flushes
(erases its contents) at the end of every iscanf (or ipromptf) function.
Calling isetbuf flushes any data in the buffer(s) specified in the mask
parameter.

336 Chapter 9

SICL Language Reference
ISETBUF

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IPRINTF, ISCANF, IPROMPTF, IFWRITE, IFREAD, IFLUSH, ISETUBUF

Chapter 9 337

SICL Language Reference
ISETDATA

ISETDATA

Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>
int isetdata (id, data);

INST id;
void *data;

Description

This function is not supported on Visual Basic.The isetdata function
stores a pointer to a data structure and associates it with a session (or
INST id).

You can use these user-defined data structures to associate device-specific
data with a session such as device name, configuration, instrument settings,
and so forth. The programmer is responsible for buffer management (buffer
allocation/deallocation).

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IGETDATA

338 Chapter 9

SICL Language Reference
ISETINTR

ISETINTR

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int isetintr (id, intnum, secval) ;
INST id;

int intnum;

long secval;

Description

This function is not supported on Visual Basic. The isetintr function
enables interrupt handling for a specified event. Installing an interrupt
handler only allows you to receive enabled interrupts. By default, all interrupt
events are disabled. The intnum parameter specifies the possible causes for
interrupts. A valid intnum value for any type of session is:

I_INTR OFF Turns off all interrupt conditions previously enabled
with calls to isetintr.

A valid intnum value for all device sessions (except GPIB and GPIO, which have
no device-specific interrupts) is:

I_INTR * Individual interfaces may include other interface-
interrupt conditions. See the following information on
each interface for more details.

Valid intnum values for all interface sessions are:

I_INTR INTFACT Interrupt when the interface becomes active. Enable
if secvall=0; disable if secval=0.

I_INTR INTFDEACT Interrupt when the interface becomes deactivated.
Enable if secvall=0; disable if secval=0.

Chapter 9 339

SICL Language Reference

ISETINTR
I_INTR TRIG Interrupt when a trigger occurs. The secval
parameter contains a bit-mask specifying which
triggers can cause an interrupt. See the ixtrig
function’s which parameter for a list of valid values.
I_INTR * Individual interfaces may include other interface-
interrupt conditions. .

Valid intnum values for all commander sessions (except RS-232 and
GPIO, which do not support commander sessions) are:

I_INTR STB Interrupt when the commander reads the status byte
from this controller. Enable if secvall=0; disable if
secval=0.

I_INTR DEVCLR Interrupt when the commander sends a device clear

to this controller (on the given interface). Enable if
secvall=0; disable if secval=0.

Interrupts on GPIB GPIB Device Session Interrupts. There are no device-specific interrupts for
the GPIB interface.

GPIB Interface Session Interrupts. The interface-specific interrupt for the
GPIB interface is:

I_INTR GPIB_IFC Interrupt when an interface clear occurs. Enable
when secvall=0 and disable when secval=0. This
interrupt will be generated whether or not this
interface is the system controller or not. That is,
regardless of whether this interface generated the
IFC or another device on the interface generated the
IFC.

Generic interrupts for the GPIB interface are:

I_INTR INTFACT Interrupt occurs whenever this controller becomes
the active controller.

I_INTR_ INTFDEACT Interrupt occurs whenever this controller passes
control to another GPIB device. (For example, the
igpibpassctl function has been called.)

340 Chapter 9

SICL Language Reference
ISETINTR

GPIB Commander Session Interrupts. These are commander-specific
interrupts for GPIB:

I_INTR GPIB PPOLLCONFIG This interrupt occurs whenever there is a
change to the PPOLL configuration. This
interrupt is enabled using isetintr by
specifying a secval greater than 0. If
secval=0, this interrupt is disabled.

I_INTR GPIB REMLOC This interrupt occurs whenever a remote
or local message is received and
addressed to listen. This interrupt is
enabled using isetintr by specifying a
secval greater than 0. If secval=0, this
interrupt is disabled.

I_INTR GPIB GET This interrupt occurs whenever the GET
message is received and addressed to
listen. This interrupt is enabled using
isetintr by specifying a secval greater
than 0. If secval=0, this interrupt is
disabled.

I_INTR GPIB TLAC This interrupt occurs whenever this device
has been addressed to talk or untalk, or
the device has been addressed to listen
or unlisten. This interrupt is enabled using
isetintr by specifying a secval greater than
0. If secval=0, this interrupt is disabled.

When the interrupt handler is called, the
secval value is set to a bit mask. Bit O is
for listen, and bit 1 is for talk. If:
B Bijt 0 = 1, this device is addressed
to listen.
B Bit 0 = 0, this device is not
addressed to listen.
B Bit 1 = 1, this device is addressed
to talk.
B Bit 1 = 0, this device is not
addressed to talk.

Chapter 9 341

Interrupts on GPIO

Interrupts on
RS-232 (Serial)

SICL Language Reference
ISETINTR

GPIO Device Session Interrupts. GPIO does not support device sessions.
Therefore, there are no device session interrupts for GPIO.

GPIO Interface Session Interrupts. The GPIO interface is always active.
Therefore, the interrupts for I_INTR INTFACT and I_INTR_INTFDEACT
will never occur. Interface-specific interrupts for the GPIO interface are:

I_INTR GPIO_EIR This interrupt occurs whenever the EIR line is asserted
by the peripheral device. Enabled when secval'=0,
disabled when secval=0.

I_INTR GPIO_RDY This interrupt occurs whenever the interface becomes
ready for the next handshake. (The exact meaning of
“ready” depends on the configured handshake mode.)

Enabled when secvall=0, disabled when secval=0.

GPIO Commander Session Interrupts. GPIO does not support commander
sessions. Therefore, there are no commander session interrupts for GPIO.

RS-232 Device Session Interrupts. The device-specific interrupt for the RS-
232 interface is:

I_INTR SERIAL DAV This interrupt occurs whenever the receive buffer in
the driver goes from the empty to the non-empty
state.

RS-232 Interface Session Interrupts. The interface-specific interrupts for the
RS-232 interface are:

I_INTR SERIAL MSL The status lines that can cause this interrupt are
DCD, CTS, DSR, and RI. This interrupt occurs
whenever one of the specified modem status lines
changes states.

The secval argument in ionintr is the logical
OR of the Modem Status Lines to monitor. In the
interrupt handler, the sec argument will be the
logical OR of the MSL line(s) that caused the
interrupt handler to be invoked.

342 Chapter 9

SICL Language Reference
ISETINTR

I_INTR_SERIAL MSL
(cont)

Most implementations of the ring indicator
interrupt only deliver the interrupt when the state
goes from high to low (a trailing edge). This differs
from other MSLs in that it is not just a state change
that causes the interrupts. The status lines that
can cause this interrupt are DCD, CTS, DSR, and
RI.

I_INTR _SERIAL_ BREAK

This interrupt occurs whenever a BREAK is
received.

I_INTR_SERIAL_ERROR

This interrupt occurs whenever a parity, overflow,
or framing error happens. The secval argument in
ionintr is the logical OR of one or more of the
following values to enable the appropriate
interrupt.

In the interrupt handler, the sec argument will be
the logical OR of these values that indicate which
error(s) occurred:

B I SERIAL_PARERR - Parity Error

B I SERIAL_OVERFLOW- Buffer
Overflow Error

B I SERIAL FRAMING - Framing Error

I_INTR_SERIAL_DAV

This interrupt occurs whenever the receive
buffer in the driver goes from the empty to the
non-empty state.

I_INTR_SERIAL_TEMT

This interrupt occurs whenever the transmit
buffer in the driver goes from the non-empty
to the empty state.

These are the generic interrupts for the RS-232 interface:

I_INTR INTFACT This interrupt occurs when the Data Carrier Detect
(DCD) line is asserted.

I_INTR INTFDEACT This interrupt occurs when the Data Carrier Detect
(DCD) line is cleared.

RS-232 Commander Session Interrupts. RS-232 does not support
commander sessions. Therefore, there are no commander session

interrupts for RS-232.

Chapter 9

343

Interrupts on VXI

SICL Language Reference
ISETINTR

VXI Device Session Interrupts. The device-specific interrupt for the VXI

interface is:

I_INTR VXI_ SIGNAL A specified device wrote to the VXI signal register (or
a VME interrupt arrived from a VXI device that is in the
servant list), and the signal was an event you defined.
This interrupt is enabled using isetintr by
specifying a secvall=0. If secval=0, this is disabled.
The value written into the signal register is returned in
the secval parameter of the interrupt handler.

VXI Interface Session Interrupts. These are interface-specific interrupts for

the VXI interface:

I_INTR VXI_SYSRESET

A VXI SYSRESET occurred. This interrupt is
enabled using isetintr by specifying a
secvall=0. If secval=0, this is disabled.

I_INTR VXI_VME

A VME interrupt occurred from a non-VXI
device, or a VXI device that is not a servant of
this interface. This interrupt is enabled using
isetintr by specifying a secvall=0. If
secval=0, this is disabled.

I_INTR VXI_UKNSIG

A write to the VXI signal register was performed
by a device that is not a servant of this
controller. This interrupt condition is enabled
using isetintr by specifying a secval'=0.

If secval=0, this is disabled. The value written
into the signal register is returned in the secval
parameter of the interrupt handler.

I_INTR_VXI_VMESYSFAIL

The VME SYSFAIL line has been asserted.

I_INTR_VME_IRQ1

VME IRQ1 has been asserted.

I_INTR_VME_IRQ2

VME IRQ2 has been asserted.

I_INTR_VME_IRQ3

VME IRQ3 has been asserted.

I_INTR_VME_IRQ4

VME IRQ4 has been asserted.

I_INTR_VME_IRQ5

VME IRQ5 has been asserted.

I_INTR_VME_IRQ6

VME IRQ6 has been asserted.

344

Chapter 9

SICL Language Reference

ISETINTR
I_INTR VME IRQ7 VME IRQ7 has been asserted.
I_INTR ANY SIG A write has occurred to the SIGNAL register
value
Generic interrupts for the VXI interface are:
I_INTR INTFACT This interrupt occurs whenever the interface receives a
BNO (Begin Normal Operation) message.
I_INTR INTFDEACT This interrupt occurs whenever the interface receives
an ANO (Abort Normal Operation) or ENO (End
Normal Operation) message.

VXI Commander Session Interrupts. The commander-specific interrupt for
VXl is:

I_INTR VXI_LLOCK A lock/clear lock word-serial command has arrived.
This interrupt is enabled using isetintr by
specifying a secvall=0. If secval=0, this is disabled. If a
lock occurred, the secval in the handler is passed a 1;
if an unlock, the secval in the handler is passed 0.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONINTR, IGETONINTR, IWAITHDLR, IINTROFF, INTRON, IXTRIG and
“Asynchronous Events and HP-UX Signals” in the Agilent SICL User’s Guide
for HP-UX for protecting I/O calls against interrupts.

Chapter 9 345

SICL Language Reference
ISETLOCKWAIT

ISETLOCKWAIT

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int isetlockwait (id, flag) ;
INST id;
int flag;

Visual Basic Syntax

Function isetlockwait
(Byval id As Integer, ByVal flag As Integer)

Description

The isetlockwait function determines whether library functions wait for a
device to become unlocked or return an error when attempting to operate on
a locked device. The error returned is I_ERR_LOCKED.

If flag is non-zero, all operations on a device or interface locked by another
session will wait for the lock to be removed. This is the default case.

If flag is zero (0), all operations on a device or interface locked by another
session will return an error (I_ERR_LOCKED). This will disable the timeout
value set up by the itimeout function.

If a request is made that cannot be granted due to hardware constraints, the
process will “hang” until the desired resources become available. To avoid
this, use the isetlockwait command with the flag parameter set to 0
and thus generate an error instead of waiting for the resources to become
available.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ILOCK, IUNLOCK, IGETLOCKWAIT

346 Chapter 9

SICL Language Reference

ISETSTB
ISETSTB
Supported sessions: commander
Affected by functions: L. ilock, itimeout

C Syntax
#include <sicl.h>
int isetstb (id, stb);

INST id;
unsigned char stb;

Visual Basic Syntax

Function isetstb
(ByVal id As Integer, ByVal stb As Byte)

Description

The isetstb function allows the status byte value for this controller to be
changed. This function is only valid for commander sessions. Bit 6 in the
stb (status byte) has special meaning. If bit 6 is set, an SRQ notification is
given to the remote controller, if its identity is known. If bit 6 is not set, the
SRQ notification is canceled. The exact mechanism for sending the SRQ
notification is dependent on the interface.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IREADSTB, IONSRQ

Chapter 9 347

SICL Language Reference
ISETUBUF

ISETUBUF

Supported sessions: device, interface, commander
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int isetubuf (id, mask, size, buf);
INST id;

int mask;

int size;

char *buf;

Description

This function is not supported on Visual Basic. The isetubuf function
supplies the buffer(s) used for formatted I/O. With this function you can
specify the size and the address of the formatted I/O buffer. This function
sets the size and actions of the read and/or write buffers of formatted 1/0.
The mask may be one, but not both, of the following flags:

I_BUF_READ Specifies the read buffer.

I_BUF_WRITE Specifies the write buffer.

Setting a size greater than zero creates a buffer of the specified size.

For write buffers, the buffer flushes (writes to the device) whenever the
buffer fills up and for each newline character in the format string. For read
buffers, the buffer is never flushed (that is, it holds any leftover data for the
next iscanf/ipromptf call). This is the default action.

Setting a size less than zero creates a buffer of the absolute value of the
specified size. For write buffers, the buffer flushes (writes to the device)
whenever the buffer fills up, for each newline character in the format string,
or at the completion of every iprintf call. For read buffers, the buffer
flushes (erases its contents) at the end of every iscanf (or ipromptf)
function. Calling isetubuf flushes the buffer specified in the mask
parameter.

348 Chapter 9

SICL Language Reference
ISETUBUF

Once a buffer is allocated to isetubuf, do not use the buffer for any other
use. In addition, once a buffer is allocated to isetubuf (either for a read or
write buffer), don’t use the same buffer for any other session or for the
opposite type of buffer on the same session (write or read, respectively).

To free a buffer allocated to a session, make a call to isetbuf which will
cause the user-defined buffer to be replaced by a system-defined buffer
allocated for this session. The user-defined buffer may then be either re-
used, or freed by the program.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IPRINTF, ISCANF, IPROMPTF, IFWRITE, IFREAD, ISETBUF, IFLUSH

Chapter 9 349

SICL Language Reference
ISWAP

ISWAP
C Syntax

#include <sicl.h>

int iswap (addr, length, datasize) ;
int ibeswap (addr, length, datasize) ;
int ileswap (addr, length, datasize) ;
char *addr;

unsigned long length;

int datasize;

Visual Basic Syntax

Function iswap
(ByVal addr As Long, ByVal length As Long,
ByVal datasize As Integer)

Function ibeswap
(ByVal addr As Long, ByVal length As Long,
ByVal datasize As Integer)

Function ileswap
(Byval addr As Long, ByVal length As Long,
ByVal datasize As Integer)

Description

These functions provide an architecture-independent way of byte swapping
data received from a remote device or data that is to be sent to a remote
device. This data may be received/sent using the iwrite/iread calls, or
the ifwrite/ifread calls. The iswap function will always swap the data.
These functions do not depend on a SICL session id. Therefore, they may
be used to perform non-SICL related task (namely, file 1/0).

The ibeswap function assumes the data is in big-endian byte ordering (big-
endian byte ordering is where the most significant byte of data is stored at
the least significant address) and converts the data to whatever byte
ordering is native on this controller’s architecture. Or it takes the data that is
byte ordered for this controller’s architecture and converts the data to big-
endian byte ordering. (Notice that these two conversions are identical.)

350 Chapter 9

SICL Language Reference
ISWAP

The ileswap function assumes the data is in little-endian byte ordering
(little-endian byte ordering is where the most significant byte of data is
stored at the most significant address) and converts the data to whatever
byte ordering is native on this controller’s architecture. Or, it takes the data
that is byte ordered for this controller’s architecture and converts the data to
litle-endian byte ordering. (These two conversions are identical.)

Depending on the native byte ordering of the controller in use (either little-
endian, or big-endian), that either the ibeswap or ileswap functions will
always be a no-op and the other will always swap bytes, as appropriate.
In all three functions, the addr parameter specifies a pointer to the data.
The length parameter provides the length of the data in bytes.

The datasize must be one of the values 1, 2, 4, or 8. datasize specifies the
size of the data in bytes and the size of the byte swapping to perform. 1 =
byte data and no swapping is performed, 2 = 16-bit word data and bytes are
swapped on word boundaries, 4 = 32-bit longword data and bytes are
swapped on longword boundaries, or 8 = 64-bit data and bytes are swapped
on 8-byte boundaries.

The length parameter must be an integer multiple of datasize. If not,
unexpected results will occur. IEEE 488.2 specifies the default data transfer
format to transfer data in big-endian format. Non-488.2 devices may send
data in either big-endian or little-endian format. The following constants are
available for use by your application to determine which byte ordering is
native to this controller’s architecture.

I_ORDER LE Defined if the native controller is little-endian.

I_ORDER_BE Defined if the native controller is big-endian.

These constants may be used in #if or #ifdef statements to determine
the byte ordering requirements of this controller’s architecture. This
information can then be used with the known byte ordering of the devices
being used to determine the swapping that needs to be performed.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IPOKE, IPEEK, ISCANF, IPRINTF

Chapter 9 351

SICL Language Reference
ITERMCHR

ITERMCHR

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int itermchr (id, ftchr);
INST id;
int ftchr;

Visual Basic Syntax

Function itermchr
(ByVal id As Integer, ByVal tchr As Integer)

Description

By default, a successful iread only terminates when it reads bufsize
number of characters, or it reads a byte with the END indicator. The
itermchr function defines a termination character condition.

The tchr argument is the character specifying the termination character. If
tchr is between 0 and 255, iread terminates when it reads the specified
character. If fchr is -1, no termination character exists, and any previous
termination character is removed.

Calling itermchr affects all further calls to iread and ifread until you
make another call to i termchr. The default termination character is -1,
meaning no termination character is defined. The iscanf function
terminates reading on an END indicator or the termination character
specified by itermchr.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IREAD, IFREAD, IGETTERMCHR

352 Chapter 9

SICL Language Reference
ITIMEOUT

ITIMEOUT

Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>
int itimeout (id, tval);

INST id;
long tval;

Visual Basic Syntax

Function itimeout
(ByVal id As Integer, ByVal tval As Long)

Description

The itimeout function is used to set the maximum time to wait for an
I/0 operation to complete. In this function, tval defines the timeout in
milliseconds. A value of zero (0) disables timeouts.

NOTE

Not all computer systems can guarantee an accuracy of one millisecond
on timeouts. Some computer clock systems only provide a resolution of
1/50th or 1/60th of a second. Other computers have a resolution of only
1 second. The time value is always rounded up to the next unit of
resolution.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IGETTIMEOUT

Chapter 9 353

Triggers on GPIB

Triggers on GPIO

Triggers on RS-232
(Serial)

SICL Language Reference
ITRIGGER

ITRIGGER

Supported sessions: device, interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int itrigger (id);
INST id;

Visual Basic Syntax

Function itrigger
(ByVal id As Integer)

Description

The itrigger function sends a trigger to a device.

GPIB Device Session Triggers. The itrigger function performs an
addressed GPIB group execute trigger (GET).

GPIB Interface Session Triggers. The itrigger function performs an
unaddressed GPIB group execute trigger (GET). The itrigger command
on a GPIB interface session should be used in conjunction with
igpibsendcmd.

GPIO Interface Session Triggers. The itrigger function performs the
same function as calling ixtrig with the I_TRIG_STD value passed to it.
itrigger pulses the CTLO control line.

RS-232 Device Session Triggers. The itrigger function sends the 488.2
*TRG\n command to the serial device.

RS-232 Interface Session Triggers. The itrigger function performs the
same function as calling ixtrig with the I_TRIG_STD value passed to it.
itrigger pulses the DTR modem control line.

354 Chapter 9

VXI Triggers

SICL Language Reference
ITRIGGER

VXI Device Session Triggers. The itrigger function sends a word-serial
trigger command to the specified device. The itrigger function is only
supported on message-based device sessions with VXI.

VXl Interface Session Triggers. The itrigger function performs the same
function as calling ixtrig with the I_TRIG_STD value passed to it.
itrigger causes one or more VXI trigger lines to fire. Trigger lines fired
are determined by the ivxitrigroute function.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IXTRIG and the interface-specific chapter in this manual for more
information on trigger actions.

Chapter 9 355

SICL Language Reference
IUNLOCK

IUNLOCK

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int iunlock (id);
INST id;

Visual Basic Syntax

Function iunlock
(ByVal id As Integer)

Description

The iunlock function unlocks a device or interface that has been
previously locked. If you attempt to perform an operation on a device or
interface that is locked by another session the call will “hang” until the
device or interface is unlocked.

Calls to ilock/iunlock may be nested, meaning that there must be an
equal number of unlocks for each lock. Calling the iunlock function may
not actually unlock a device or interface again. For example, see how the
following C code locks and unlocks devices:

ilock (id) ; /* Device locked */
iunlock (id) ; /* Device unlocked */
ilock (id) ; /* Device locked */
ilock (id) ; /* Device locked */
iunlock (id) ; /* Device still locked */
iunlock (id) ; /* Device unlocked */

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
ILOCK, ISETLOCKWAIT, IGETLOCKWAIT

356 Chapter 9

SICL Language Reference
IUNMAP

IUNMAP

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int iunmap (id, addr, map_space, pagestart, pagecnt) ;
INST id;

char *addr;

int map_space;

unsigned int pagestart;

unsigned int pagecnt;

Visual Basic Syntax

Function iunmap

(Byval id As Integer, ByVal addr As Long,
ByVal mapspace As Integer,

ByVal pagestart As Integer,

ByVal pagecnt As Integer)

Description

This function is not recommended for new program development. Use
IUNMAPX instead. The function is not supported over LAN. The iunmap
function unmaps a mapped memory space. The id specifies a VXI interface
or device session. The addr argument contains the address value returned
from the imap call.

The pagestart argument indicates the page within the given memory space
where the memory mapping starts. The pagecnt argument indicates how
many pages to free. The map_space argument contains the following legal
values:

I_MAP Al6 Map in VXI A16 address space.
I_MAP A24 Map in VXI A24 address space.
I_MAP A32 Map in VXI A32 address space.
I_MAP VXIDEV Map in VXI device registers. (Device session only.)

Chapter 9 357

SICL Language Reference
IUNMAP

I_MAP EXTEND Map in VXI A16 address space. (Device session only.)

I_MAP SHARED Map in VXI A24/A32 memory that is physically located on
this device (sometimes called local shared memory).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IMAP

358 Chapter 9

SICL Language Reference
IUNMAPX

IUNMAPX

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int iunmapx (id, handle, mapspace, pagestart, pagecnt) ;
INST id;
unsigned long handle;
int mapspace;
unsigned int pagestart;
unsigned int pagecnt;

Visual Basic Syntax

Function iunmap

(Byval id As Integer, ByVal addr As Long,
ByVal mapspace As Integer,

ByVal pagestart As Integer,

ByVal pagecnt As Integer)

Description

This function is not supported over LAN. The iunmapx function unmaps a
mapped memory space. The id specifies a VXI interface or device session.
The addr argument contains the address value returned from the imap call.
The pagestart argument indicates the page within the given memory space
where the memory mapping starts. The pagecnt argument indicates how
many pages to free. The map_space argument contains the following legal
values:

I _MAP Al6 Map in VXI A16 address space.
I_MAP A24 Map in VXI A24 address space.
I_MAP A32 Map in VXI A32 address space.

I_MAP VXIDEV Map in VXI device registers. (Device session only.)

I_MAP_EXTEND Map in VXI A16 address space. (Device session only.)

I_MAP SHARED Map in VXI A24/A32 memory that is physically located on
this device (sometimes called local shared memory).

Chapter 9 359

SICL Language Reference
IUNMAPX

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IMAPX

360 Chapter 9

SICL Language Reference
IVERSION

IVERSION
C Syntax

#include <sicl.h>

int iversion (Siclversion, implversion) ;
int *siclversion;
int *implversion;

Visual Basic Syntax

Function iversion
(ByVal id As Integer, siclversion As Integer,
implversion As Integer)

Description

The iversion function stores in siclversion the current SICL revision
number times ten that the application is currently linked with. The SICL
version number is a constant defined in sicl.h for C and in SICL.BAS
or SICL4 .BAS for Visual Basic as I_SICL_REVISION. This function
stores in implversion an implementation specific revision number (the
version number of this implementation of the SICL library).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

Chapter 9 361

SICL Language Reference
IVXIBUSSTATUS

IVXIBUSSTATUS

Supported sessions: interface

C Syntax

#include <sicl.h>

int ivxibusstatus (id, request, result) ;
INST id;

int request;

unsigned long *result;

Visual Basic Syntax

Function ivxibusstatus
(ByVal id As Integer, ByVal request As Integer,
result As Long)

Description

The ivxibusstatus function returns the status of the VXI interface. This
function takes one of the following parameters in the request parameter and
returns the status in the result parameter.

I_VXI_BUS_TRIGGER Returns a bit-mask corresponding to the
trigger lines which are currently being
driven active by a device on the VXI bus.

I_VXI_BUS_LADDR Returns the logical address of the VXI
interface (viewed as a device on the VXI
bus).

I_VXI_BUS_SERVANT AREA Returns the servant area size of this
device.

I_VXI_BUS_NORMOP Returns 7 if in normal operation and a
0 otherwise.

I_VXI_BUS_CMDR_LADDR Returns logical address of this device’s

commander, or -1 if no commander is
present (either this device is the top level
commander or normal operation has not
been established).

362 Chapter 9

SICL Language Reference
IVXIBUSSTATUS

I_VXI_BUS_MAN_ID

Returns the manufacturer’s ID of this
device.

I_VXI_BUS_MODEL_ID

Returns the model ID of this device.

I_VXI_BUS_PROTOCOL

Returns the value stored in this device’s
protocol register.

I_VXI_BUS_XPROT

Returns the value that this device will use
to respond to a read protocol word-serial
command.

I_VXI_BUS_SHM SIZE

Returns the size of VXI memory available
on this device. For A24 memory, this value
represents 256 byte pages. For A32
memory, this value represents 64 Kbyte
pages. Interpret as an unsigned integer for
this command.

I_VXI_BUS_SHM ADDR_SPACE

Returns either 24 or 32 depending on
whether the device’s VXI memory is
located in A24 or A32 memory space.

I_VXI_BUS_SHM PAGE

Returns the location of the device’s VXI
memory. For A24 memory, the result is in
256 byte pages. For A32 memory, the
result is in 64 Kbyte pages.

Chapter 9

363

SICL Language Reference
IVXIBUSSTATUS

I_VXI_BUS_VXIMXI Returns 0 if device is a VXI device.
Returns 17 if device is a MXI device.

I_VXI_BUS_TRIGSUPP Returns a numeric value indicating which
triggers are supported. The numeric value
is the sum of the following values:
I|_TRIG_STD 0x0000001L
I_TRIG_ALL OxFfFFFFfL
I_TRIG_TTLO 0x00001000L
I|_TRIG_TTL1 0x00002000L
I_TRIG_TTL2 0x00004000L
I_TRIG_TTL3 0x00008000L
I_TRIG_TTL4 0x00010000L
I_TRIG_TTL5 0x00020000L
I_TRIG_TTL6 0x00040000L
I_TRIG_TTL7 0x00080000L
I_TRIG_ECLO 0x00100000L
I|_TRIG_ECL1 0x00200000L
I_TRIG_ECL2 0x00400000L
I_TRIG_ECL3 0x00800000L
I_TRIG_EXTO 0x01000000L
I|_TRIG_EXT1 0x00200000L
I_TRIG_EXT2 0x00400000L
I_TRIG_EXT3 0x00800000L
I_TRIG_CLKO 0x10000000L
I_TRIG_CLK1 0x20000000L
I_TRIG_CLK2 0x40000000L
I_TRIG_CLK10 0x80000000L
I_TRIG_CLK100 0x00000800L
I_TRIG_SERIAL_DTR 0x00000400L
I|_TRIG_SERIAL_RTS 0x00000200L
I_TRIG_GPIO_CTLO 0x00000100L
I_TRIG_GPIO_CTL1 0x00000080L

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IVXITRIGON, IVXITRIGOFF

364 Chapter 9

SICL Language Reference

IVXIGETTRIGROUTE
IVXIGETTRIGROUTE
Supported sessions: interface
Affected by functions: L. ilock, itimeout

C Syntax
#include <sicl.h>
int ivxigettrigroute (id, which, route) ;
INST id;

unsigned long which;
unsigned long *route;

Visual Basic Syntax

Function ivxigettrigroute
(ByVal id As Integer, ByVal which As Long,
route As Long)

Description

The ivxigettrigroute function returns in route the current routing of the
which parameter. See the ivxitrigroute function for more details on
routing and the meaning of route.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IVXITRIGON, IVXITRIGOFF, IVXITRIGROUTE, IXTRIG

Chapter 9 365

vxiinfo structure
(C Programs)

SICL Language Reference
IVXIRMINFO

IVXIRMINFO

Supported sessions: device, interface, commander

C Syntax

#include <sicl.h>

int ivxirminfo (id, laddr, info) ;
INST id;

int laddr;

struct vxiinfo *info;

Visual Basic Syntax

Function ivxirminfo
(ByVal id As Integer, ByVal laddr As Integer,
info As vxiinfo)

Description

The ivxirminfo function returns information about a VXI device from the
VXI Resource Manager. The id is the INST for any open VXI session. The
laddr parameter contains the logical address of the VXI device.

The info parameter points to a structure of type struct vxiinfo. The
function fills in the structure with the relevant data. The structure struct
vxiinfo (defined in the file sicl.h) is listed on the following pages. This
static data is set up by the VXI resource manager.

For C programs, the vxiinfo structure has the following syntax:

struct vxiinfo {
/* Device Identification */

short laddr; /* Logical Address */

char name[1l6]; /* Symbolic Name (primary) */
char manuf_name[16]; /* Manufacturer Name */

char model_name[16]; /* Model Name */

unsigned short man_id; /* Manufacturer ID */
unsigned short model; /* Model Number */

unsigned short devclass; /* Device Class */

/* Self Test Status */
short selftest; /* 1=PASSED O=FAILED */

366 Chapter 9

vxiinfo structure
(Visual Basic
Programs)

SICL Language Reference

IVXIRMINFO
/* Location of Device */
short cage_num; /* Card Cage Number */
short slot; /* Slot #, -1 is unknown, -2 is MXI */

/* Device Information */

unsigned short protocol; /* Value of protocol register
*/

unsigned short Xx_protocol; /* Value from Read Protocol
command */

unsigned short servant _area;/* Value of servant area */

/* Memory Information */

/* page size is 256 bytes for A24 and 64K bytes for
A32*/

unsigned short addrspace;/* 24=p24, 32=A32, O=none */

unsigned short memsize; /* Amount of memory in pages */

unsigned short memstart; /* Start of memory in pages */

/* Misc. Information */

short slot0 laddr; /* LU of slot 0 device, -1 if unknown
*/

short cmdr_laddr; /* LU of commander, -1 if top level*/

/* Interrupt Information */

short int_handler[8] ; /* List of interrupt handlers */
short interrupter(8]; /* List of interrupters */
short file[10]; /* Unused */

For Visual Basic programs, the vxiinfo structure has the following syntax:

Type vxiinfo
laddr As Integer
name As String * 16
manuf_name As String * 16
model_name As String * 16
man_id As Integer
model As Integer
devclass As Integer
selffest As Integer
cage_nhum As Integer
slot As Integer
protocol As Integer
X_protocol As Integer
servant _area As Integer

Chapter 9 367

SICL Language Reference
IVXIRMINFO

addrspace As Integer
memsize As Integer
memstart As Integer
slot0_laddr As Integer
cmdr_laddr As Integer
int_handler (0 To 7) As Integer
interrupter (0 To 7) As Integer
fill(0O To 9) As Integer

End Type

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

See the platform-specific manual for Resource Manager information.

368 Chapter 9

SICL Language Reference
IVXISERVANTS

IVXISERVANTS

Supported sessions: interface

C Syntax

#include <sicl.h>

int ivxiservants (id, maxnum, list);
INST id;

int maxnum;

int *list;

Visual Basic Syntax

Function ivxiservants
(ByVal id As Integer, ByVal maxnum As Integer,
list() As Integer)

Description

The ivxiservants function returns a list of VXI servants. This function
returns the first maxnum servants of this controller. The list parameter points
to an array of integers that holds at least maxnum integers. This function fills
in the array from beginning to end with the list of active VXI servants. All
unneeded elements of the array are filled with -1.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

Chapter 9 369

SICL Language Reference
IVXITRIGOFF

IVXITRIGOFF

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int ivxitrigoff (id, which) ;
INST id;
unsigned long which;

Visual Basic Syntax

Function ivxitrigoff
(ByVal id As Integer, ByVal which As Long)

Description

The ivxitrigoff function de-asserts trigger lines and leaves them
deactivated. The which parameter uses all of the same values as the
ixtrig command, as shown. Any combination of values may be used in
which by performing a bit-wise OR of the desired values. To fire trigger lines
(assert, then de-assert the lines), use ixtrig instead of ivxitrigon and
ivxitrigoff.

I_TRIG_ALL All standard triggers for this interface (bitwise OR of all
valid triggers)
I_TRIG_TTLO TTL Trigger Line 0
I_TRIG_TTL1l TTL Trigger Line 1
I_TRIG_TTL2 TTL Trigger Line 2
I_TRIG_TTL3 TTL Trigger Line 3
I_TRIG_TTL4 TTL Trigger Line 4
I_TRIG_TTL5 TTL Trigger Line 5
I_TRIG_TTL6 TTL Trigger Line 6
I_TRIG_TTL7 TTL Trigger Line 7
I_TRIG_ECLO ECL Trigger Line 0

370 Chapter 9

SICL Language Reference
IVXITRIGOFF

I_TRIG_ECL1 ECL Trigger Line 1
I_TRIG_ECL2 ECL Trigger Line 2
I_TRIG_ECL3 ECL Trigger Line 3
I_TRIG_EXTO External BNC or SMB Trigger Connector 0
I_TRIG_EXT1 External BNC or SMB Trigger Connector 1

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IVXITRIGON, IVXITRIGROUTE, IVXIGETTRIGROUTE, IXTRIG

Chapter 9 371

SICL Language Reference

IVXITRIGON

IVXITRIGON

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h”

int ivxitrigon

INST id;

(id, which) ;

unsigned long which;

Visual Basic Syntax

Function ivxitrigon

(ByVal id As Integer, ByVal which As Long)

Description

The ivxitrigon function asserts trigger lines and leaves them activated.
The which parameter uses the same values as the ixtrig command. Any
combination of values may be used in which by performing a bit-wise OR of

the desired values.

I_TRIG_ALL

All standard triggers for this interface (bitwise OR of all

valid triggers)

I_TRIG_TTLO

TTL Trigger Line O

I_TRIG_TTL1

TTL Trigger Line 1

I_TRIG_TTL2 TTL Trigger Line 2
I_TRIG_TTL3 TTL Trigger Line 3
I_TRIG_TTL4 TTL Trigger Line 4
I_TRIG_TTL5 TTL Trigger Line 5
I_TRIG_TTL6 TTL Trigger Line 6
I_TRIG_TTL7 TTL Trigger Line 7
I_TRIG_ECLO ECL Trigger Line 0

I_TRIG_ECL1

ECL Trigger Line 1

I_TRIG_ECL2

ECL Trigger Line 2

372

Chapter 9

SICL Language Reference

IVXITRIGON
I_TRIG_ECL3 ECL Trigger Line 3
I_TRIG_EXTO External BNC or SMB Trigger Connector 0
I_TRIG_EXT1 External BNC or SMB Trigger Connector 1

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IVXITRIGOFF, IVXITRIGROUTE, IVXIGETTRIGROUTE, IXTRIG

Chapter 9 373

SICL Language Reference
IVXITRIGROUTE

IVXITRIGROUTE

Supported sessions: interface
Affected by functions: ilock, itimeout
C Syntax

#include <sicl.h>

int ivxitrigroute (id, in_which, out_which) ;
INST id;

unsigned long in_which;

unsigned long out which;

Visual Basic Syntax

Function ivxitrigroute
(ByVal id As Integer, ByVal in_which As Long,
ByVal out which As Long)

Description

The ivxitrigroute function routes VXI trigger lines. With some VXI
interfaces, it is possible to route one trigger input to several trigger outputs.
The in_which parameter may contain only one of the valid trigger values.
The out_which may contain zero, one, or several of the following valid
trigger values listed.

I_TRIG_ALL All standard triggers for this interface (bit-wise OR of all
valid triggers) (out_which ONLY)
I_TRIG_TTLO TTL Trigger Line O
I_TRIG_TTL1 TTL Trigger Line 1
I_TRIG_TTL2 TTL Trigger Line 2
I_TRIG_TTL3 TTL Trigger Line 3
I_TRIG_TTL4 TTL Trigger Line 4
I_TRIG_TTL5 TTL Trigger Line 5
I_TRIG_TTL6 TTL Trigger Line 6
I_TRIG_TTL7 TTL Trigger Line 7

374 Chapter 9

SICL Language Reference

IVXITRIGROUTE

I_TRIG_ECLO ECL Trigger Line 0

I_TRIG_ECL1l ECL Trigger Line 1

I_TRIG_ECL2 ECL Trigger Line 2

I_TRIG_ECL3 ECL Trigger Line 3

I_TRIG_EXTO External BNC or SMB Trigger Connector 0

I_TRIG_EXT1 External BNC or SMB Trigger Connector 1

The in_which parameter may also contain:

I_TRIG_CLKO Internal clocks provided by the controller (implementation-
specific)

I_TRIG_CLK1 Internal clocks provided by the controller (implementation-
specific)

I_TRIG_CLK2 Internal clocks provided by the controller (implementation-
specific)

This function routes the trigger line in the in_which parameter to the trigger
lines contained in the out_which parameter. In other words, when the line
contained in in_which fires, all of the lines contained in out_which are also
fired. For example, thhis command causes EXTO to fire whenever TTL3
fires:

ivxitrigroute (id, I TRIG TTL3, I TRIG EXTO);
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also
IVXITRIGON, IVXITRIGOFF, IVXIGETTRIGROUTE, IXTRIG

Chapter 9 375

SICL Language Reference
IVXIWAITNORMOP

IVXIWAITNORMOP

Supported sessions: device, interface, commander
Affected by functions: L itimeout
C Syntax

#include <sicl.h>

int ivxiwaitnormop (id);
INST id;

Visual Basic Syntax

Function ivxiwaitnormop
(ByVal id As Integer)

Description

The ivxiwaitnormop function suspends the process until the interface or
device is active (establishes normal operation). See the iwaithdlr
function for other methods of waiting for an interface to become ready to
operate.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exrr variable is set if an error occurs.

See Also
IWAITHDLR, IONINTR, ISETINTR, ICLEAR

376 Chapter 9

SICL Language Reference

IVXIWS
IVXIWS
Supported SesSIONS: device
Affected by functions: L. ilock, itimeout

C Syntax

#include <sicl.h>

int ivxiws (id, wsemd, wsresp, rpe) ;
INST id;

unsigned short wscmd;

unsigned short *wsresp;
unsigned short *rpe;

Visual Basic Syntax

Function ivxiws
(Byval id As Integer, ByVal wscmd As Integer,
wsresp As Integer, rpe As Integer)

Description

The ivxiws function sends a word-serial command to a VXI message-
based device. The wscmd contains the word-serial command. If wsresp
contains zero (0), this function does not read a word-serial response.

If wsresp is non-zero, the function reads a word-serial response and stores
it in that location.

If ivxiws executes successfully, rpe does not contain valid data. If the
word-serial command errors, rpe contains the Read Protocol Error
response, the ivxiws function returns I_ERR IO, and the wsresp
parameter contains invalid data.

The ivxiws function will always try to read the response data if the wsresp
parameter is non-zero. If you send a word serial command that does not
return response data and the wsresp argument is non-zero, this function will
“hang” or timeout (see itimeout) waiting for the response.

Chapter 9 377

SICL Language Reference
IVXIWS

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
ITIMEOUT

378 Chapter 9

SICL Language Reference
IWAITHDLR

IWAITHDLR
C Syntax

#include <sicl.h>

int iwaithdlr (fimeout) ;
long timeout;

Description

This function is not supported on Visual Basic. The iwaithdlr function
causes the process to suspend until an enabled SRQ or interrupt condition
occurs and the related handler executes. Once the handler completes its
operation, this function returns and processing continues.

If timeout is non-zero, iwaithdIr terminates and generates an error if no
handler executes before the given time expires. If timeout is zero,
iwaithdlr waits indefinitely for the handler to execute. Specify timeout
in milliseconds.

NOTE

Not all computer systems can guarantee an accuracy of one millisecond
on timeouts. Some computer clock systems only provide a resolution of
1/50th or 1/60th of a second. Other computers have a resolution of only
1 second. The time value is always rounded up to the next unit of
resolution.

The iwaithdlr function will implicitly enable interrupts. If you have called
iintroff, iwaithdlr will re-enable interrupts and disable them again
before returning.

Interrupts should be disabled with iintroffif iwaithdlr is used. The
reason for disabling interrupts is that a race condition exists between the
isetintr and iwaithdlr. Thus, if you only expect one interrupt, it might
come before iwaithdlr executes. Interrupts will still be disabled after the
iwaithdlr function has completed. For example:

iintroff ();
ionintr (hpib, act isr);
isetintr (hpib, I_INTR_INTFACT, 1),

igpibpassctl (hpib, ba);

Chapter 9 379

SICL Language Reference
IWAITHDLR

iwaithdlr (0);
iintron ();

In a multi-threaded application, iwaithdlr will enable interrupts for the
whole process. If two threads call iintro£f and one of them then calls
iwaithdlr, interrupts will be enabled and both threads can receive
interrupt events. This is not a defect, since the application must handle
enabling/disabling of interrupts and keep track of when all threads are
ready to receive interrupts.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also
IONINTR, IGETONINTR, IONSRQ, IGETONSRQ, IINTROFF, INTRON

380 Chapter 9

SICL Language Reference

IWRITE
IWRITE
Supported sessions: device, interface, commander
Affected by functions: L. ilock, itimeout
C Syntax

#include <sicl.h>

int iwrite (id, buf, datalen, endi, actualcnt) ;
INST id;

char *buf;

unsigned long datalen;

int endi;

unsigned long *actualcnt;

Visual Basic Syntax

Function iwrite

(Byval id As Integer, ByVal buf As String,
ByVal datalen As Long, ByVal endi As Integer,
actual As Long)

Description

The iwrite function sends a block of data to an interface or device.

This function writes the data specified in buf to the session specified in id.
The buf argument is a pointer to the data to send to the specified interface
or device. The datalen argument is an unsigned long integer containing the
length of the data block in bytes.

If the endi argument is non-zero, this function will send the END indicator
with the last byte of the data block. Otherwise, if endi is set to zero, no END
indicator will be sent.

The actualcnt argument is a pointer to an unsigned long integer which, upon
exit, will contain the actual number of bytes written to the specified interface
or device. A NULL pointer can be passed for this argument and no value will
be written. To pass a NULL actualcnt parameter to iwrite in Visual Basic,
pass the expression 0s.

For LAN, if the client times out prior to the server, the actualcnt returned will
be 0, even though the server may have written some data to the device or
interface.

Chapter 9 381

SICL Language Reference
IWRITE

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
IREAD, IFREAD, IFWRITE

382 Chapter 9

SICL Language Reference

IXTRIG
IXTRIG
Supported sessions: interface
Affected by functions: L. ilock, itimeout

C Syntax
#include <sicl.h>
int ixtrig (id, which) ;

INST id;
unsigned long which;

Visual Basic Syntax

Function ixtrig
(ByVal id As Integer, ByVal which As Long)

Description

The ixtrig function sends an extended trigger to an interface. The which
argument can be:

I_TRIG_STD Standard trigger operation for all interfaces.
I_TRIG_STD operation depends on the specific
interface as shown in the following subsections.

I_TRIG_ALL All standard triggers for this interface (bit-wise OR of all
supported triggers).

I_TRIG_TTLO TTL Trigger Line O

I_TRIG_TTL1 TTL Trigger Line 1

I_TRIG_TTL2 TTL Trigger Line 2

I_TRIG_TTL3 TTL Trigger Line 3

I_TRIG_TTL4 TTL Trigger Line 4

I_TRIG_TTL5 TTL Trigger Line 5

I_TRIG_TTL6 TTL Trigger Line 6

I_TRIG_TTL7 TTL Trigger Line 7

I_TRIG_ECLO ECL Trigger Line 0

Chapter 9 383

SICL Language Reference

IXTRIG
I_TRIG_ECL1l ECL Trigger Line 1
I_TRIG_ECL2 ECL Trigger Line 2
I_TRIG_ECL3 ECL Trigger Line 3
I_TRIG_EXTO External BNC or SMB Trigger Connector 0
I_TRIG_EXT1 External BNC or SMB Trigger Connector 1
I_TRIG_EXT2 External BNC or SMB Trigger Connector 2
I_TRIG_EXT3 External BNC or SMB Trigger Connector 3

Triggerson GPIB° When used on a GPIB interface session, passing the I_TRIG_STD value to
the ixtrig function causes an unaddressed GPIB group execute trigger
(GET). The ixtrig command on a GPIB interface session should be used
in conjunction with the igpibsendcmd. There are no other valid values for
the ixtrig function.

Triggers on GPIO The ixtrig function will pulse either the CTLO or CTL1 control line. The
following values can be used:

I_TRIG_STD CTLO
I_TRIG_GPIO_CTLO CTLO
I_TRIG_GPIO_CTL1 CTL1

Triggers on RS-232 The ixtrig function will pulse either the DTR or RTS modem control lines.

(Serial) The following values can be used:
I_TRIG_STD Data Terminal Ready (DTR)
I_TRIG_SERIAL DTR Data Terminal Ready (DTR)
I_TRIG_SERIAL_RTS Ready To Send (RTS)

384 Chapter 9

SICL Language Reference
IXTRIG

Triggers on VXI When used on a VXl interface session, passing the I_TRIG_STD value
to the ixtrig function causes one or more VXI trigger lines to fire. The
trigger lines fired are determined by the ivxitrigroute function. The
I_TRIG_STD value has no default value. If I_TRIG_STD is not defined
before it is used, no action will be taken.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

See Also
ITRIGGER, IVXITRIGON, IVXITRIGOFF

Chapter 9 385

SICL Language Reference
_SICLCLEANUP

_SICLCLEANUP
C Syntax

#include <sicl.h>

int siclcleanup (void);
Visual Basic Syntax

Function siclcleanup () As Integer
Description

Visual Basic programs call this routine without the initial underscore (_).
This routine is called when a program is finished with all SICL I/O resources.
Calling this routine is not required on Windows 95, Windows 98, Windows
Me, Windows 2000, Windows NT, or HP-UX.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Exr variable is set if an error occurs.

386 Chapter 9

SICL Library Information

387

SICL Library Information

This appendix provides information on SICL software files and system
interaction in Windows 95, Windows 98, Windows Me, Windows 2000,

and Windows NT. This information can be used as a reference for removing
SICL from a system, if necessary. The appendix contents are:

File System Information
SICL Function Summary
Porting to Visual Basic
RS-232 Cabling Information

388 Appendix A

File Location

SICL Library Information
File System Information

File System Information

This section describes SICL file system information for Windows 95,
Windows 98, Windows Me, Windows 2000, and Windows NT.

Windows 95/Windows 98/Windows Me

All SICL files are installed in the base directory specified by the person who
installs SICL, with the exception of several common files that Windows must
be able to locate. On Windows 95/98/Me, the following files are copied to the
Windows subdirectory. (In the figure, Windows 98 also applies to Windows

Me.)
Windows 95 Windows 98
Windows Windows
Inf — Inf

gpio.inf 139%ipt.inf

hpib.inf gpio.inf

wn1394.inf hpib.inf

System — System

ag341i32.vxd ag341i32.vxd

ag350i32.vxd ag350i32.vxd

hpioclas.dll hpioclas.dll

sicl32.dll sicl32.dll

siclrpc.dll siclrpc.dll

siclut16.dll siclut16.dll

siclut17.dll siclut17.dll

siclut31.dll siclut31.dll

vbsicl32.dll vbsicl32.dll

wn1394.vxd

wnpapi32.dll — System32

L1394ipt.d|l
Drivers
1394ipt.sys

N

\

Appendix A

389

The Registry

SICL Configuration
Information

File Location

SICL Library Information
File System Information

SICL places the following key in the Windows 95, Windows 98, or Windows
Me registry under HKEY LOCAL MACHINE:

Software\Agilent\IO Libraries\CurrentVersion

Also, if the LAN Server is configured, the following key will be created under
HKEY LOCAL MACHINE if it did not previously exist:

Software\Microsoft\Windows\CurrentVersion\RunServices

SICL configuration information is stored in the Windows 95, Windows 98, or
Windows Me registry under the Software\Agilent\IO Libraries\
CurrentVersion branch under HKEY LOCAL MACHINE.

Windows NT/Windows 2000

All SICL files are installed in the base directory specified by the person who
installs SICL, with the exception of several common files that Windows must
be able to locate. On Windows NT and Windows 2000, the following files are
copied to the Windows subdirectory.

- N

Windows NT 4.0 Windows 2000
Winnt Winnt
I— System32 Inf
sicl32.dll 1394ipt.inf
siclrpc.dll agtgpib.inf
vbsicl32.dll agtgpio.inf
wnpapi32.dll
System32
Drivers 1394ipt.dll
ag074i32.sys agtgpibclass.dll
ag34i32.sys sicl32.dll
ag350i32.sys siclrpe.dll
wn1394.sys vbsicl32.dll
Drivers
1394ipt.sys
ag074i32.sys
ag341i32.sys
ag350i32.sys
agt82341.sys
agt82350.sys

K agte2050.sys /

390 Appendix A

SICL Library Information
File System Information

The Registry SICL places the following keys in the Windows NT registry under
HKEY LOCAL MACHINE:

Software\Agilent\IO Libraries\CurrentVersion
System\CurrentControlSet\Control\GroupOrderList
System\CurrentControlSet\Control\ServiceOrderList
System\CurrentControlSet\Services\hp341i32
System\CurrentControlSet\Services\EventLog\
Application\SICL Log
System\CurrentControlSet\Services\EventLog\System\
hp341132

SICL Configuration SICL configuration information is stored in the Windows NT or Windows
Information 2000 registry under the Software\Agilent\IO Libraries\ CurrentVersion
branch under HKEY_LOCAL_MACHINE.

Appendix A 391

SICL Library Information
SICL Function Summary

SICL Function Summary

The following tables summarize supported features for each SICL function.
The first table lists the core (interface-independent) SICL functions that
apply to all types of devices and interfaces. The tables after that list the
interface-specific SICL functions (SICL functions specific to GPIB, GPIO,
LAN, RS-232/Serial, and VXI interfaces, respectively).

Each table shows if the SICL function supports device (DEV), interface
(INTF), and/or commander (CMDR) session(s) and/or is affected by the
ilock (LOCK) and/or the itimeout (TIMEOUT) function(s).

Also, the tables titled “Core SICL Functions” and “VXI SICL Functions” have
the additional column, LAN CLIENT TIMEOUT. SICL functions with Xs in this
column may timeout over LAN, even those functions that cannot timeout
over local interfaces.

Core SICL Functions

Function DEV | INTF | CMDR | LOCK | TIMEOUT | LAN CLIENT
TIMEOUT

IABORT
IBLOCKCOPY
ICAUSEERR
ICLEAR
ICLOSE
IFLUSH
IFREAD
IFWRITE
IGETADDR
IGETDATA
IGETDEVADDR
IGETERRNO
IGETERRSTR
IGETINTFSESS X X X
IGETINTFTYPE X X X

x
x
X| X| X| X| X

X | X| X| X| X| X| X]| X
X | X| X| X| X| X

X | X X| X| X| X| X| X| X

392 Appendix A

SICL Library Information
SICL Function Summary

Core SICL Functions

Function DEV | INTF | CMDR | LOCK | TIMEOUT | LAN CLIENT
TIMEOUT

IGETLOCKWAIT| X X X
IGETLU X X X
IGETLUINFO
IGETLULIST
IGETONERROR | X X X
IGETONINTR X X
IGETONSRQ X X
IGETSESSTYPE| X X X
IGETTERMCHR X X X
IGETTIMEOUT X X X
IHINT X X X
IINTROFF
IINTRON
ILOCAL X X
ILOCK X X X X X
IONERROR
IONINTR X X X X
IONSRQ X X X
IOPEN X X X X
IPOPFIFO
IPRINTF X X X X X X
IPROMPTF X X X X X X
IPUSHFIFO
IREAD X X X X X X
IREADSTB X X X X
IREMOTE X X X X
ISCANF X X X X X X

Appendix A 393

SICL Library Information
SICL Function Summary

Core SICL Functions

Function DEV | INTF | CMDR | LOCK | TIMEOUT | LAN CLIENT
TIMEOUT

ISETBUF X X X X
ISETDATA X X X
ISETINTR X X X X
ISETLOCKWAIT | X X X
ISETSTB X X X X
ISETUBUF X X X X
ISWAP
ITERMCHR X X
ITIMEOUT X X X
ITRIGGER X X X X X
IUNLOCK X X X
IVERSION X
IWAITHDLR
IWRITE X X X X
IXTRIG X X X X

GPIB SICL Functions

Function DEV | INTF CMDR LOCK TIMEOUT
IGPIBATNCTL X X X
IGPIBBUSADDR X X X
IGPIBBUSSTATUS X X X
IGPIBGETT1DELAY X X X
IGPIBLLO X X X
IGPIBPASSCTL X X X
IGPIBPPOLL X X X
IGPIBPPOLLCONFIG X X X X

394 Appendix A

SICL Library Information
SICL Function Summary

GPIB SICL Functions

Function DEV | INTF CMDR LOCK TIMEOUT
IGPIBPPOLLRESP X X X
IGPIBRENCTL X X X
IGPIBSENDCMD X X X
IGPIBSETT1DELAY X X X

GPIO SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT
IGPIOCTRL X X X
IGPIOGETWIDTH X
IGPIOSETWIDTH X X X
IGPIOSTAT X

LAN SICL Functions
Function DEV INTF CMDR LOCK TIMEOUT
IGETGATEWAYTYPE X X X
ILANGETTIMEOUT X
ILANTIMEOOUT X

RS-232/Serial SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT
ISERIALBREAK X X X
ISERIALCTRL X X X
ISERIALMCLCTRL X X X
ISERIALMCLSTAT X X X
ISERIALSTAT X X X

Appendix A

395

SICL Library Information
SICL Function Summary

VXI SICL Functions

Function DEV | INTF | CMDR | LOCK | TIMEOUT | LAN CLIENT
TIMEOUT

IMAP X X X X X
IMAPINFO X X
IPEEK
IPOKE
IUNMAP X X X
IVXIBUSSTATUS X X X X
IVXIGETTRIGROUTE X X X X
IVXIRMINFO X X X X
IVXISERVANTS X X
IVXITRIGOFF X X X X
IVXITRIGON X X X X
IVXITRIGROUTE X X X X
IVXIWAITNORMOP X X X X X
IVXIWS X X X X

396

Appendix A

SICL Library Information
Porting to Visual Basic

Porting to Visual Basic

This section shows how to program SICL applications in Visual Basic
version 4.0 or later. For SICL applications written in an earlier Visual Basic
version than version 4.0 (for example, version 3.0), you can port your SICL
applications to Visual Basic version 4.0 or later.

Porting SICL applications to Visual Basic 4.0 or later is a matter of adding
the SICL4.BAS declaration file (rather than the SICL.BAS file) to each
project that calls SICL for Visual Basic 4.0 or later programs. There may
also be changes in functions when passing null pointers for strings to SICL
functions. For example, in Visual Basic version 3.0, the preceding ByVval
keyword was used as follows:

ivprintf (id, mystring, ByVal 0&)

In Visual Basic version 4.0 or later, you only need to pass the 0& null pointer
because version 4.0 or later knows this is by reference:

ivprintf (id, mystring, 0&)

Once you have added the SICL4.BAS declaration file to each project and
removed ByVal keywords preceding null pointers for strings, your SICL
applications will run correctly with Visual Basic 4.0 or later.

Appendix A 397

SICL Library Information
RS-232 Cabling Information

RS-232 Cabling Information

This section lists several general purpose RS-232 cables and adapters.
Consult your instrument’s operating manual for information on the status
lines used for handshaking.

Cable/Adapter Part Numbers

In the following table, recommended cables and adapters are shown in
boldface type. Other cables are listed since they may work better than the
recommended cable/adapter in some applications. In the table, “a” and “b”

are defined as:

B [a] One of four adapters in the 34399A RS-232 Adapter Kit. Kit
includes four adapters to go from DB9 Female Cable (34398A)
to PC/Printer DB25 Male or Female, or to modem DB9 Female
or DB25 Female.

B [b] Part of 34398A RS-232 Cable Kit. Kit comes with RS-232, 9-pin
Female to 9-pin Female Null modem/printer cable and one
adapter 9-pin Male to 25-pin Female (part number 5181-6641).
The adapter is also located in the 34399A RS-232 Adapter Kit.

Instrument Computer/Printer Cable Adapter Part Length
Connector Connector Part Number Number
9-Pin Male 25-Pin Male 24542H none 3m (9ft 10in)
245420 5181-6641 [a] 3m (9ft 10in)
F1047-80002 [b] 5181-6641 [a] 2.5m (8ft 2.5in)
9-Pin Male 25-Pin Female 24542G none 3m (9ft 10in)
245420 5181-6640 [a] 3m (9ft 10in)
F1047-80002 [b] 5181-6640 [a] 2.5m (8ft 2.5in)
9-Pin Male 9-Pin Male 245420 none 3m (9ft 10in)
24542H & 24542M none 6m (19ft 10in)
F1047-80002 [b] none 2.5m (8ft 2.5in)
9-Pin Male 25-Pin Female 24542M none 3m (9ft 10in)
245420 5181-6642 [a] 3m (9ft 10in)
F1047-80002 [b] 5181-6642 [a] 2.5m (8ft 2.5in)
9-Pin Male 9-Pin Female 24542V 5181-6639 [a] 3m (9ft 10in)
F1047-80002 [b] 5181-6639 [a] 2.5m (8ft 2.5in)

398

Appendix A

SICL Library Information
RS-232 Cabling Information

Instrument Computer/Printer Cable Adapter Part Length
Connector Connector Part Number Number
25-Pin Female 25-Pin Female 24542G 5181-6642 [a] 3m (9ft 10in)
25-Pin Female 9-Pin Female 24542G 5181-6639 [a] 3m (9ft 10in)
24542M none 3m (9ft 10in)
25-Pin Female 25-Pin Male 17255D none 1.2m (3ft 11in)
C2913A none 1.2m (3ft 11in)
24542G 5181-6641 [a] 3m (9ft 10in)
25-Pin Female 25-Pin Female 13242G none 5m (16ft 8in)
17255M none 1.5m (4ft 11in)
C2914A none 1.2m (3ft 11in)
24542G 5181-6640 [a] 3m (9ft 10in)
25-Pin Female 9-Pin Male 24542G none 3m (9ft 10in)
24542V 5181-6640 [a] 3m (9ft 10in)
F1047-80002 [b] 5181-6640 [a] 2.5m (8ft 2.5in)
Cable/Adapter Pinouts
Instrument 92219J Cable PC
1 1
TX 2 2 TX
RX 3 3 RX
RTS 4 4 RTS
CTS 5 — 5 CTS
DSR 6 *—6 DSR
GND 7 7 GND
DTR 20 20 DTR
DB25 DB25 DB25 DB25
Female Male Female Male
NOTE: The 92219J is directional. This cable may work

differently when swapped end-to-end.

Appendix A 399

SICL Library Information
RS-232 Cabling Information

-

-

-

Instrument 13242G Cable PC/Printer
1 1 Shield
X 2 2 X
RX 3 < 3 RX
RTS 4 8 CD
CTS 5 9 20 DTR
DSR 6 —I
GND 7 7 GND
cD 8 4 RTS
SCD 12 o— 19 SRTS
11 T 11
SRTS 19 * 12 SCD
DTR 20 +— 5 CTS
L 6 DSR
DB25 DB25 DB25 DB25
Female Male Male Female /
Instrument 24542U Cable PC
DCD 1 1 DCD
RX 2 ~ 2 RX
TX 2 _ i TX
DTR DTR
5 \/_ 5
GND GND
DSR 6 6 DSR
RTS 7 7 RTS
CTS 8 — — 8 CTS
RI 9 9 RI
DB9 DB9 DB9 DB9
Male Female Female Male /
400 Appendix A

SICL Library Information
RS-232 Cabling Information

a N

Instrument F1047-80002 Cable PC
DCD 1 1 DCD
RX 2 2 RX
L 3 = 3 P
DTR 4 T 4 DTR
GND 5 5 GND
DSR 6 6 DSR
RTS 7 7 RTS
CTS 8 > 8 CTS
RI 9 9 RI
DB9 DB9 DB9 DB9

k Male Female Female Male /

: N

Instrument 24542G/H Cable PC

DCD 1 2 X
X 3 4 RTS
DTR 4 +— 5 CTS
GND 5 KT— 6 DSR
DSR 6 — 7 GND
RTS 7 8 DCD
CTS 8 20 DTR
RI 9

24542H DB9 DB9 DB25 DB25
Male Female Female Male

24542G DB9 DB9 DB25 DB25
Male Female Male Female

- /

Appendix A 401

SICL Library Information
RS-232 Cabling Information

a)

Instrument 24542M Modem Cable Modem
DCD 1 8 DCD
RX 2 3 RX
T 3 2 T
DTR 4 20 DTR
GND 5 7 GND
DSR 6 6 DSR
RTS 7 4 RTS
CTS 8 5 CTS
RI 9 22 RI
DB9 DB9 DB25 DB25

K Male Female Male Female /

a N

Instrument C2913A/C2914A Cable PC
1 1
TX 2 2 X
RX 3 G 3 RX
RTS 4 4 RTS
CTS 5 |._ 5 CTS
DSR 6 l * 6 DSR
GND 7 7 GND
DTR 20 — 7 N__ 2 DTR
C2913A DB25 DB25 DB25 DB25
Female Male Female Male
C21914A DB25 DB25 DB25 DB25
Female Male Male Female

_ /

402 Appendix A

SICL Library Information
RS-232 Cabling Information

- N

Instrument Typical Mouse Adapter PC
DCD 1 2 TX
RX 2 \/ 3 RX
TX 3 \/7 4 RTS
DTR 4 —5 CTS
GND 5 SO 6 DSR
DSR 6 7 GND
RTS 7 /" '\ 8 DCD
CTS 8 20 DTR
RI 9 22 RI
DB9 DB9 DB25 DB25
Female Male Female Male

K A mouse adapter works well as a 9-pin to 25-pin adapter with a PC.

-

Instrument F1047-80002 Cable 5181-6641 Adapter (Black) PC
DCD 1 1 1 2 X
RX 2 2 2 3 RX
X 3 3 3 4 gg
DTR 4 4 4— 5
GND 5 SN 5 5 _YE 6 DSR
DSR 6 6 6 7 ggg
RTS 7 7 7 — 8
cTS 8 > 8 8 20 || DTR
RI 9 9 9
DB9 DB9 DB9 DB9 DB25 DB25

K Male Female Female Male Female Male /

Appendix A 403

SICL Library Information
RS-232 Cabling Information

: N

Instrument F1047-80002 Cable 5181-6640 Adapter (White) PC
DCD 1 1 1 2 B((
RX 2 2 2 3
™ 3 = 3 3 4 ng
DTR 4 4 4 — 5 T
GND 5 N 5 5 _YC 6 DSR
DSR 6 6 6 7 GND
RTS 7 7 7 —e 8 DCD
CTS 8 8 8 20 DTR
RI 9 9 9
DB9 DB9 DB9 DB9 DB25 DB25

\ Male Female Female Male Male Female J

: N

Instrument F1047-80002 Cable 5181-6642 Adapter (Gray) PC
DCD 1 1 1 2 X
RX 2 2 2 3 RX
X 3 3 3 4 RTS
DTR 4 T 4 4 5 CTS
GND 5 5 5 6 DSR
DSR 6 6 6 7 GND
ors i ><__ : 20 | | bR
CTs 8 8 8 20 DTR
RI 9 9 9 22 RI
DB9 DB9 DB9 DB9 DB25 DB25

\ Male Female Female Male Male Female J

404 Appendix A

SICL Library Information
RS-232 Cabling Information

- N

Instrument F1047-80002 Cable 5181-6639 Adapter (Black) Modem
DCD 1 1 1 1 DCD
RX 2 2 2 2 RX
D 3 = 3 3 —— 3 >
DTR 4 4 4 4 DTR
GND 5 >N 5 5 5 GND
DSR 6 6 6 6 DSR
RTS 7 7 7 7 RTS
CTS 8 8 8 8 CTS
RI 9 9 9 9 RI
DB9 DB9 DBY DB9 DB9 DB9

K Male Female Female Male Male Female J

a)

Instrument 24542U Cable 5181-6641 Adapter (Black) PC
DCD 1 1 1 2 X
RX 2 2 2 3 RX
2P 3 = 3 3 4 RTS
DTR 4 —— 4 4 — 5 CTS
GND 5 Il I 5 _YC 6 DSR
DSR 6 6 6 7 GND
RTS 7 7 7 —«T 8 DCD
CTS 8 —! L8 8 20 DTR
RI 9 9 9
DB9 DB9 DB9 DB9 DB25 DB25

K Male Female Female Male Female Male J

Appendix A 405

SICL Library Information
RS-232 Cabling Information

Instrument 24542U Cable 5181-6640 Adapter (White) PC/Printer
DCD 1r 1 1 2 X
RX 2 2 2 3 RX
X 3 3 3 4 gg
DTR 4 4 4— 5
GND 5 S 5 5 _YC 6 DSR
DSR 6 % 6 6 7 GND
RTS 7 7 7 8 DCD
CTS 8§ — 8 8 > 20 DTR
RI 9 9 9
DB9 DB9 DB9 DB9 DB25 DB25
K Male Female Female Male Female Male /
/Instrument 24542U Cable 5181-6642 Adapter (Gray) Modem \
DCD 11— 1 1 2 TX
RX 2 2 2 3 RX
™ 3 = 3 3 4 RTS
DTR 4 4 4 5 CTS
GND 5 5 5 6 DSR
DSR 6 6 6 7 GND
RTS 7 7 7 8 DCD
CTS 8 — 8 8 20 DTR
RI 9 9 9 22 RI
DB9 DB9 DB9 DB9 DB25 DB25
K Male Female Female Male Female Male /
/ Instrument 24542U Cable 5181-6639 Adapter (Black) Modem\
DCD 11— ——1 1 1 DCD
RX 2 2 2 2 RX
TX 3 3 3 3 X
DTR 4 4 4 4 DTR
GND 5 S 5 5 5 GND
DSR 6 6 6 6 DSR
RTS 7 7 7 7 RTS
CTS 8 — 8 8 8 CTS
RI 9 9 9 9 RI
DB9 DB9 DB9 DB9 DB9 DB9
k Male Female Female Male Male Female J
406 Appendix A

Troubleshooting SICL Programs

407

Troubleshooting SICL Programs

This chapter contains a description of SICL error codes and provides
guidelines to troubleshoot common problems with SICL. The chapter
contents are:

SICL Error Codes

Common Windows Problems
Common RS-232 Problems
Common GPIO Problems
Common LAN Problems

408 Appendix B

Troubleshooting SICL Programs
SICL Error Codes

SICL Error Codes

When you install a default SICL error handler such as I_ERROR_EXIT or
I_ERROR _NOEXIT with an ionerror call, a SICL internal error message
will be logged. To view these messages:

B On Windows 95, Windows 98, or Windows Me, start the Message
Viewer utility by clicking the Agilent 10 Libraries Control (on the
taskbar) and then clicking Run Message Viewer. You must start
the Message Viewer utility before you execute a program for error
messages to be logged.

B On Windows NT or Windows 2000, SICL logs internal messages
as Windows NT events that you can view by clicking the Agilent 10
Libraries Control (on the taskbar) and then clicking Run Event
Viewer. Both system and application messages can be logged to
the Event Viewer from SICL. SICL messages are identified by
SICL LOG or by the driver name (such as hp341i32 for the GPIB
driver).

For C programs, you can use ionerror to install a custom error handler.
The error handler can call igeterrstr with the given error code and the
corresponding error message string will be returned. See Chapter 3 -
Programming with SICL for more information on error handlers. This table
summarizes SICL error codes and messages.

Error Code

Error String

Description

I_ERR_ABORTED

Externally aborted

A SICL call was aborted by external means.

I_ERR_BADADDR

Bad address

The device/interface address passed to
iopen does not exist. Verify that the
interface name is the one assigned with
10 Config.

I_ERR_BADCONFIG

Invalid configuration

An invalid configuration was identified when
calling iopen.

I_ERR_BADFMT

Invalid format

Invalid format string specified for iprintf
or iscanf.

I_ERR_BADID

Invalid INST

The specified INST id does not have a
corresponding iopen.

I_ERR_BADMAP

Invalid map request

The imap call has an invalid map request.

Appendix B

409

Troubleshooting SICL Programs

SICL Error Codes

Error Code Error String Description
I_ERR BUSY Interface is in use by non- The specified interface is busy.
SICL process
I_ERR DATA Data integrity violation The use of CRC, Checksum, and so forth

imply invalid data.

I_ERR_INTERNAL

Internal error occurred

SICL internal error.

I_ERR_INTERRUPT

Process interrupt occurred

A process interrupt (signal) has occurred in
your application.

I_ERR_INVLADDR

Invalid address

The address specified in iopen is not a
valid address (for example, "hpib, 57”).

I_ERR_IO

Generic I/O error

An 1/O error has occurred for this
communication session.

I_ERR_LOCKED

Locked by another user

Resource is locked by another session
(see isetlockwait).

I_ERR_NESTEDIO

Nested 1/0

Attempt to call another SICL function when
current SICL function has not completed
(WIN16). More than one I/O operation is
prohibited.

I_ERR_NOCMDR

Commander session is not
active or available

Tried to specify a commander session when
it is not active, available, or does not exist.

I_ERR_NOCONN

No connection

Communication session has never been
established, or connection to remote has
been dropped.

I_ERR_NODEV

Device is not active or
available

Tried to specify a device session when it is
not active, available, or does not exist.

I_ERR_NOERROR

No Error

No SICL error returned; function return value
is zero (0).

I_ERR_NOINTF

Interface is not active

Tried to specify an interface session when it
is not active, available, or does not exist.

I_ERR_NOLOCK

Interface not locked

An iunlock was specified when device
was not locked.

I_ERR_NOPERM

Permission denied

Access rights violated.

I_ERR_NORSRC

Out of resources

No more system resources available.

I_ERR_NOTIMPL

Operation not implemented

Call not supported on this implementation.
The request is valid, but not supported on
this implementation.

410

Appendix B

Troubleshooting SICL Programs
SICL Error Codes

Error Code

Error String

Description

I_ERR_NOTSUPP

Operation not supported

Operation not supported on this
implementation.

I_ERR OS

Generic O.S. error

SICL encountered an operating system
error.

I_ERR_OVERFLOW

Arithmetic overflow

Arithmetic overflow. The space allocated for
data may be smaller than the data read.

I_ERR_PARAM

Invalid parameter

The constant or parameter passed is not
valid for this call.

I_ERR_SYMNAME

Invalid symbolic name

Symbolic name passed to iopen not
recognized.

I_ERR_SYNTAX

Syntax error

Syntax error occurred parsing address
passed to iopen. Make sure you have
formatted the string properly. White space is
not allowed.

I_ERR_TIMEOUT

Timeout occurred

A timeout occurred on the read/write
operation. The device may be busy, in a
bad state, or you may need a longer timeout
value for that device. Check also that you
passed the correct address to iopen.

I_ERR_VERSION

Version incompatibility

The iopen call has encountered a SICL
library that is newer than the drivers. Need
to update drivers.

Appendix B

41

Troubleshooting SICL Programs
Common Windows Problems

Common Windows Problems

Windows 95, Windows 98, and Windows Me

Subsequent Execution of
SICL Application Fails

If you terminate a program using the Task Manager,
or if a program has an abnormal termination, some
drivers may not unload from memory. This could
cause subsequent attempts to execute the I/O
program to fail. To recover from this situation, you
must restart (reboot) Windows 95/Windows 98.

Windows NT and Windows 2000

Program Appears to
Hang and Cannot Be
Stopped

Check that an itimeout value has been set for all
SICL sessions in your program. Otherwise, when an
instrument does not respond to a SICL read or write,
SICL will wait indefinitely in the SICL kernel access
routine, preventing the application from being
stopped.

To stop the application, click the “toaster” button in
the upper-left corner of the window and then close the
window. After a few seconds, an End Task dialog
box appears. Press the End Task button to stop

the application.

Formatted I/0 Using $F
Causes Application Error

Verify $ (cvarsdll) is used when compiling the
application, and either $ (quilibsdl1l) for Windows
applications or $ (conlibsdll) for console
applications when linking your application.

Also, the $F format character for iprint£ only
works with languages that use MSVCRT.DLL,
MSVCRT20.DLL, or MSVCRT40.DLL for their run-
time library.

Some versions of Visual C/C++ and Borland C/C++
use their own versions of the run-time library. They
cannot share global data with SICL’s version of the
run-time library and, therefore, cannot use $F.

412

Appendix B

Troubleshooting SICL Programs
Common RS-232 Problems

Common RS-232 Problems

Unlike GPIB, special care must be taken to ensure that RS-232 devices are
correctly connected to the computer. Verifying the configuration first may
save many hours of debugging time.

No Response from
Instrument

Be sure the RS-232 interface is configured to match
the instrument. Check the Baud Rate, Parity, Data
Bits, and Stop Bits. Also, be sure you are using the
correct cabling. See Appendix A - SICL Library
Information for RS-232 cablling information.

If you are sending several commands at once, try
sending commands one at a time either by inserting
delays or by single-stepping the program.

Data Received from
Instrument is Garbled

Check the interface configuration. Install an
interrupt handler in your program that checks for
communication errors.

Data Lost During Large
Transfers

Check:
B Flow control setting match
B Full/half duplex for 3-wire connections
B Cabling is correct for hardware handshaking

Appendix B

413

Troubleshooting SICL Programs
Common GPIO Problems

Common GPIO Problems

Because the GPIO interface has such flexibility, most initial problems come
from cabling and configuration. There are many configuration fields in the
IO Config utility that must be configured for GP1O. For example, no data
transfers will work correctly until the handshake mode and polarity have
been correctly set. A GPIO cable can have up to 50 wires and you may need
to solder your own plug to at least one end. It is important to ensure correct
hardware configuration before you begin troubleshooting the software.

If you are porting an existing 98622 application, the hardware task is
simplified. The cable connections are the same and many IO Config fields
closely approximate 98622 DIP switches. For a new application, an
individual with good hardware skills should become familiar with the E2075
cabling and handshake behavior. In either case, you may want to read the
Agilent E2075 GPIO Interface Card Installation Guide.

Some GPIO-specific reasons for certain SICL errors follow. Many of these
errors can also be caused by non-GPIO problems. For example, “Operation
not supported” will happen on any interface if you execute igetintfsess
with an interface ID.

Bad Address (for iopen)

This indicates iopen did not succeed because the specified address
(symbolic name) did not correspond to a correctly configured entry in
IO Config. If iopen fails, be sure the interface is properly configured.
IO Config establishes an entry for the GPIO card in the Windows 95,
Windows 98, Windows 2000, or Windows NT registry.

We strongly encourage you to let IO Config handle all registry maintenance
for SICL. However, you can edit registry entries manually. If you manually
change the registry and enter an improper configuration value, the failed
iopen may send a diagnostic message to the Message Viewer (Windows
95/98/Me) or Event Viewer (Windows NT/2000).

For example:

HPe2074: GPIO config, bad read clk entry
ISA card in slot #0 NOT INITIALIZED (Invalid parameter)

414 Appendix B

Troubleshooting SICL Programs
Common GPIO Problems

In this case, you must correct the configuration data in the registry. The
recommended procedure is to use IO Config, remove the incorrect interface
name, and create a Configured Interface with legal values selected
from the 10 Config utility’s dialog boxes.

Operation Not Supported

The E2075 has several modes. Certain operations are valid in one mode,
and not supported in another. Two examples are:

igpioctrl(id, I_GPIO_AUX, value);
This operation applies only to the Enhanced mode of the data port. Auxiliary
control lines do not exist when the interface is in 98622 Compatibility mode.
igpioctrl(id, I _GPIO SET PCTL, 1);

This operation is allowed only in Standard-Handshake mode. When the
interface is in Auto-Handshake mode (the default), explicit control of the
PCTL line is not possible.

No Device

This error indicates PSTS checks were set for read/write operations and a
false state of the PSTS line was detected. Enabling and disabling PSTS
checks is done with:

igpioctrl(id, I GPIO _CHK PSTS, value);

If the check seems to be reporting the wrong state of the PSTS line, correct
the PSTS polarity bit via the IO Config utility. If the PSTS check is
functioning properly and this error is generated, some problem with the
cable or the peripheral device is indicated.

Bad Parameter

If the interface is in 16-bit mode, the number of bytes requested in an iread
or iwrite function must be an even number. Although you probably view
16-bit data as words, the syntax of iread and iwrite requires a length
specified as bytes.

Appendix B 415

Using the ping
Utility

Troubleshooting SICL Programs
Common LAN Problems

Common LAN Problems

NOTE

Both the LAN client and LAN server may log messages to the Message
Viewer (Windows 95/98/Me) or Event Viewer (Windows NT/2000)
under certain conditions, whether or not an error handler has been

registered.

General Troubleshooting Techniques

Before SICL over LAN can function, the client must be able to talk to the
server over the LAN. You can use the following techniques to determine if
the problem is a general network problem or is specific to the LAN software
provided with SICL.

If the application cannot open a session to the LAN server for SICL, the first
diagnostic to try is the ping utility. This utility allows you to test general
network connectivity between client and server machines.

Using ping looks something like the following, where each line after the
Pinging line is an example of a packet successfully reaching the server.

>ping instserv.hp.com

Pinging instserv.hp.com[128.10.0.3] with 32 bytes of data:
Reply from 128.10.0.3:bytes=32 time=10ms TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms TTL=225

However, if ping cannot reach the host, a message similar to the following
is displayed that indicates the client was unable to contact the server. In this
case, you should contact your network administrator to determine if there is
a LAN problem. When the LAN problem has been corrected, you can retry

your SICL application over LAN.

Pinging instserv.hp.com[128.10.0.3] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

416 Appendix B

Troubleshooting SICL Programs
Common LAN Problems

Usingthe rpcinfo Another tool you can use to determine where a problem might reside is the

Utility

rpcinfo utility on an HP-UX workstation or other UNIX workstation. This
tool tests whether a client can make an RPC call to a server.

rpcinfo -p. The first rpcinfo option to try is —p, which will print a list of
registered programs on the server:

> rpcinfo -p instserv
program verses proto port
100001 1 udp 1788 rstatd

100001 2 udp 1788 rstatd
100001 3 udp 1788 rstatd
100002 1 udp 1789 rusersd
100002 2 udp 1789 rusersd
395180 1 tcp 1138
395183 1 tcp 1038

Several lines of text may be returned, but the ones of interest for this
example are the lines for programs 395180 for the SICL LAN Protocol

and 395183 for the TCP/IP Instrument Protocol (the port numbers will vary).
If the line for program 395180 or 395183 is not present, your LAN server is
likely misconfigured. Consult your server’s documentation, correct the
configuration problem, and then retry your application.

rpcinfo -t. The second rpcinfo option which can be tried is —t, which will
attempt to execute procedure 0 of the specified program. Lines similar to
the following should be displayed. If not, the server is likely misconfigured or
not running. Consult your server’s documentation, correct the problem, and
then retry your application. See the rpcinfo (1M) man page for more
information.

For the SICL LAN Protocol:

> rpcinfo -t instserv 395180
program 395180 version 1 ready and waiting
For the TCP/IP Instrument Protocol:

> rpcinfo -t instserv 395183
program 395183 version 1 ready and waiting

Appendix B 417

iopen Fails -
Syntax Error

iopen Fails - Bad
Address

iopen Fails -
Unrecognized
Symbolic Name

iopen Fails -
Timeout

iopen Fails - Other
Failures

Troubleshooting SICL Programs
Common LAN Problems

LAN Client Problems

In this case, iopen fails with the error I_ERR_SYNTAX. [f using the
“lan,net_address” format, ensure that the net_address is a hostname, not
an IP address. If you must use an IP address, specify the address using the
bracket notation, 1an[128.10.0. 3], rather than the comma notation
lan,128.10.0.3.

An iopen fails with the error I_ERR_BADADDR, and the error text is core
connect failed: program not registered. This indicates the
LAN server for SICL has not registered itself on the server machine. This
may also be caused by specifying an incorrect hostname. Ensure that the
hostname or IP address is correct and, if so, check the LAN server’s
installation and configuration.

The iopen fails with the error I_ERR_SYMNAME, and the error text is

bad hostname, gethostbyname () failed. This indicates the
hostname used in the iopen address is unknown to the networking
software. Ensure that the hostname is correct and, if so, contact your
network administrator to configure your machine to recognize the hostname.
The ping utility can be used to determine if the hostname is known to your
system. If ping returns with the error Bad IP address, the hostname is
not known to the system.

An iopen fails with a timeout error. Increase the Client Timeout Delta
configuration value via the 10 Config utility. See Chapter 8 - Using
SICL with LAN for more information.

An iopen fails with some error other than those already mentioned. Try
the steps at the beginning of this section to see if the client and server can
talk to one another over the LAN. If the ping and rpcinfo procedures
work, check any server error logs that may be available for further clues.
Check for possible problems such as a lack of resources at the server
(memory, number of SICL sessions, etc.).

418 Appendix B

I/O Operation Times
Out

Operation Following
a Timed Out
Operation Fails

iopen Fails or
Other Operations
Fail Due to Locks

SICL LAN
Application Fails -
RPC Error

rpcinfo Does Not

List 395180 or
395183

Troubleshooting SICL Programs
Common LAN Problems

An I/O operation times out even though the timeout being used is infinity.
Increase the Server Timeout configuration value via the 10 Config utility.
Also, ensure the LAN client timeout is large enough if ilantimeout is
used. See Chapter 8 - Using SICL with LAN for more information.

An I/O operation following a previous timeout fails to return or takes longer
than expected. Ensure the LAN timeout being used by the system is
sufficiently greater than the SICL timeout being used for the session in
question. The LAN timeout should be large enough to allow for the network
overhead in addition to the time that the 1/0 operation may take.

If ilantimeout is used, you must determine and set the LAN timeout
manually. Otherwise, ensure the Client Timeout Delta configuration value is
large enough (via the 10 Config utility). See Chapter 8 - Using SICL with
LAN for more information.

An iopen fails due to insufficient resources at the server or I/0 operations
fail because some other session has the device or interface locked. LAN
server connections for SICL from previous clients may not have terminated
properly. Consult your server’s troubleshooting documentation and follow
the instructions for cleaning up any previous server processes.

LAN Server Problems

After starting the LAN server, a SICL LAN application fails and returns a
message similar to the following:

RPC_PROG_NOT REGISTERED

There is a short (approximately 5 second) delay between starting the LAN
server and the LAN server being registered with the Portmapper. Try
running the SICL LAN application again.

A rpcinfo query fails to indicate that program 395180 (SICL LAN
Protocol) or 395183 (TCP/IP Instrument Protocol) is available on the server.
If you have not yet started the LAN server, do so now. See the Agilent |10
Libraries Installation and Configuration Guide for Windows for details to start
the LAN server. If you have started the LAN server, try rpecinfo again after
a few seconds to ensure the LAN server had time to register itself.

Appendix B 419

iopen Fails

LAN Server Appears
“Hung”

rpcinfo Fails -
can’'t contact
portmapper

rpcinfo Fails -
program 395180 is
not available

Mouse “Hung”
When Stopping LAN
Server

Troubleshooting SICL Programs
Common LAN Problems

An iopen fails when you run your application, but rpeinfo indicates the
LAN server is ready and waiting. Ensure the requested interface has been
configured on the server. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on using IO Config to
configure interfaces for SICL.

The LAN server appears “hung” (possibly due to a long timeout being set by
a client on an operation that will never succeed). Login to the LAN server
and stop the hung LAN server process. To stop the LAN server, see the
Agilent IO Libraries Installation and Configuration Guide for Windows.

This action will affect all connected clients, even those that may still be
operational. If informational logging has been enabled using the IO Config
utility, connected clients can be determined by log entries in the Message
Viewer (Windows 95/98/Me) or Event Viewer (Windows NT/2000) utility.

An rpcinfo returns the message rpcinfo: can’t contact
portmapper: RPC_SYSTEM ERROR - Connection refused.

If the LAN server is not running, start it. If the LAN server is running, stop the
currently running LAN server and then restart it.

Use Ctri+Alt+Del to display a task list. Ensure that both LAN Server and
Portmap are not running before restarting the LAN server. See the Agilent
10 Libraries Installation and Configuration Guide for Windows for details to
start and stop the LAN server.

An rpcinfo -t server hostname 395180 1 returns the following
message:

rpcinfo: RPC_SYSTEM ERROR - Connection refused
program 395180 version 1 is not available

Ensure that the LAN server program is running on the server.

After attempting to stop a LAN server via either Ctrl+C or the Windows
95/98/Me/2000/NT x-button (in the upper-right hand corner of the window),
the mouse may appear to be “hung”. Press any keyboard key and the LAN
server will stop and the mouse will again be operational.

420 Appendix B

Glossary

421

Glossary

address
A string uniquely identifying a particular interface or a device on that
interface.

bus error
An action that occurs when access to a given address fails either
because no register exists at the given address, or the register at the
address refuses to respond.

bus error handler
Programming code executed when a bus error occurs.

commander session
A session that communicates to the controller of this bus.

controller
A computer used to communicate with a remote device such as an
instrument. In the communications between the controller and the device
the controller is in charge of, and controls the flow of communication (that
is, does the addressing and/or other bus management).

controller role
A computer acting as a controller communicating with a device.

device
A unit that receives commands from a controller. Typically a device is an
instrument but could also be a computer acting in a non-controller role, or
another peripheral such as a printer or plotter.

device driver
A segment of software code that communicates with a device. It may
either communicate directly with a device by reading and writing
registers, or it may communicate through an interface driver.

device session
A session that communicates as a controller specifically with a single
device, such as an instrument.

422 Glossary

handler
A software routine used to respond to an asynchronous event such as an
error or an interrupt.

instrument
A device that accepts commands and performs a test or measurement
function.

interface
A connection and communication media between devices and
controllers, including mechanical, electrical, and protocol connections.

interface driver
A software segment that communicates with an interface. It also handles
commands used to perform communications on an interface.

interface session
A session that communicates and controls parameters affecting an entire
interface.

interrupt
An asynchronous event requiring attention out of the normal flow of
control of a program.

lock
A state that prohibits other users from accessing a resource, such as a
device or interface.

logical unit
A logical unit is a number associated with an interface. In SICL, a logical
unit uniquely identifies an interface. Each interface on the controller must
have a unique logical unit.

mapping
An operation that returns a pointer to a specified section of an address
space as well as makes the specified range of addresses accessible to
the requester.

non-controller role
A computer acting as a device communicating with a controller.

Glossary 423

process
An operating system object containing one or more threads of execution
that share a data space. A multi-process system is a computer system
that allows multiple programs to execute simultaneously, each in a
separate process environment. A single-process system is a computer
system that allows only a single program to execute at a given point in
time.

register
An address location that controls or monitors hardware.

session
An instance of a communications channel with a device, interface, or
commander. A session is established when the channel is opened with
the iopen function and is closed with a corresponding call to iclose.

SRQ
Service Request. An asynchronous request (an interrupt) from a remote
device indicating that the device requires servicing.

status byte
A byte of information returned from a remote device showing the current
state and status of the device.

symbolic name
A name corresponding to a single interface or device. This name
uniquely identifies the interface or device on this controller. If there is
more than one interface or device on the controller, each interface or
device must have a unique symbolic name.

thread
An operating system object that consists of a flow of control within a
process. A single process may have multiple threads that each have
access to the same data space within the process. However, each thread
has its own stack and all threads may execute concurrently with each
other (either on multiple processors, or by time-sharing a single
processor). Multi-threaded applications are only supported with 32-bit
SICL.

424 Glossary

A

addressing
device sessions, 40
GPIO interfaces, 115
RS-232 devices, 167
RS-232 interfaces, 172
VXI message-based devices, 132
Agilent
telephone numbers, 18
web site, 18
asynchronous events
enabling/disabling, 63
handling, 62

B

big-endian byte ordering, 260
Borland C++ compilers, using, 26, 37
buffers, formatted 1/O, 50, 58
building SICL applications, 35
byte ordering
big-endian, 260
little-endian, 351

C

C applications, compiling, 36
command module, 130

commander session, 39

common LAN problems, 416
communications sessions, opening, 39
compiled SCPI (C-SCPI), 130
compiling C applications, 36
configuring RS-232 interfaces, 162
copyright information, 12

Index
D

device sessions
addressing, 40
definition, 39
RS-232, 163
device types, VXI, 129
direct memory address (DMA), 265
DLLs, C applications, 35

E

error handlers
using in C, 66
using in Visual Basic, 69

error handling, 65

Event Viewer, 65, 409

examples
C Example Program Code, 21
Config GPIO Interfaces, 112
Config LAN Client (Gateway), 187
Config LAN Client (LAN) Interface, 188
Config LAN Server Interface, 189
Config RS-232 Interface, 162
Creating a Commander Session, 42
Device Locking (C), 72
Device Locking (Visual Basic), 74
Error Handlers (Visual Basic), 70
Formatted 1/O (Visual Basic), 57
GPIB (82350) Interface, 90
GPIB Device Session (C), 94
GPIB Device Session (VB), 95
GPIB Interface Session (C), 100
GPIB Interface Session (VB), 101
GPIO Interface Session (C), 117
GPIO Interface Session (VB), 118
GPIO Interrupts (C), 120
Instaling an Error Handler (C), 67
I-SCPI Interface Session, 140
LAN-gatewayed Addressing, 190
LAN-gatewayed Session (C), 193
LAN-gatewayed Session (VB), 195

Index

425

E (continued)

examples (cont'd)

Non-Formatted I/O (C), 60
Non-Formatted 1/0 (VB), 61
Opening a Device Session, 41
Opening Interface Session, 42
Oscillosope Program (C), 76
Oscillosope Program (VB), 83
Processing VME Intr (C), 157
RS-232 Dev Session (VB), 170
RS-232 Interface Sn (C), 175
RS-232 Interface Sn (VB), 176
Servicing Requests (C), 106
VB Program Example Code, 28
VME Interrupts (C), 150

VXI Interface Session (C), 146
VXI Interrupt Actions (C), 156
VXI Memory 1/0 (C), 153

VXI Msg-Based Dev Sn (C), 133
VXI Reg-Based Prog (C), 143
Writing an Error Handler (C), 68

F

formatted I/O

buffers, 50, 58

C applications, 43
conversion, 44, 52

related functions, 51

Visual Basic applications, 52
Visual Basic functions, 59

functions

_siclcleanup, 386
iblockcopy, 209
iblockmovex, 211
icauseerr, 213
iclear, 214
iclose, 215
iderefptr, 216
iflush, 217

ifread, 219

F (continued)

functions (cont’d)

ifwrite, 221

igetaddr, 223
igetdata, 224
igetdevaddr, 225
igeterrno, 226
igeterrstr, 227
igetgatewaytype, 228
igetintfsess, 229
igetintftype, 230
igetlockwait, 231
igetlu, 232
igetluinfo, 233
igetlulist, 235
igetonerror, 236
igetonintr, 237
igetonsrq, 238
igetsesstype, 239
igettermchr, 240
igettimeout, 241
igpibatnctl, 242
igpibbusaddr, 243
igpibbusstatus, 244
igpibgett1delay, 246
igpibllo, 247
igpibpassctl, 248
igpibppoll, 249
igpibppollconfig, 250
igpibppollresp, 251
igpibrenctl, 252
igpibsendcmd, 253
igpibsett1delay, 254
igpioctrl, 255
igpiogetwidth, 259
igpiosetwidth, 260
igpiostat, 262

ihint, 265

iintroff, 267

iintron, 268
ilangettimeout, 269

426

Index

F (continued)

functions (cont'd)

ilantimeout, 270
ilocal, 273

ilock, 274

imap, 277
imapinfo, 283
imapx, 280
ionerror, 285
ionintr, 288
ionsrqg, 290
iopen, 291
ipeek, 293
ipeekx16, 294
ipeekx32, 294
ipeekx8, 294
ipoke, 295
ipokex16, 296
ipokex32, 296
ipokex8, 296
ipopfifo, 297
iprintf, 299
ipromptf, 309
ipushfifo, 310
iread, 312
ireadstb, 314
iremote, 315
iscanf, 316
iserialbreak, 326
iserialctrl, 327
iserialmclctrl, 330
iserialmclstat, 331
iserialstat, 332
isetbuf, 336
isetdata, 338
isetintr, 339
isetlockwait, 346
isetstb, 347
isetubuf, 348
iswap, 350
itermchr, 352

F (continued)

functions (cont’d)
itimeout, 353
itrigger, 354
iunlock, 356
iunmap, 357
iunmapx, 359
iversion, 361
ivxibusstatus, 362
ivxigettrigroute, 365
ivxirminfo, 366
ivxiservants, 369
ivxitrigoff, 370
ivxitrigon, 372
ivxitrigroute, 374
ivxiwaitnormop, 376
ivxiws, 377
iwaithdlr, 379
iwrite, 381
ixtrig, 383

G

gateway, 183
getting started using C, 21
getting started using Visual Basic, 27
glossary, 421
GPIB
commander sessions, 103
communications sessions, 91
device sessions, service requests, 93
device sessions, SICL functions, 92
device sessions, using, 92
devices, addressing, 92
handling SRQs, 105
interface sessions, 98
interrupt handlers, 105
multiple interrupts, 105
primary/secondary addresses, 93
VXI mainframe connections, 93

Index

427

G (continued)

GPIB (cont'd)
interface sessions, serv req, 99
interface sessions, inter, 99
interface sessions, functions, 98
interfaces, configuring, 90, 112
interfaces, introduction, 89
interrupts, 104
SICL functions, 91

GPIO
communications sessions, 113
interface sessions, def, 115
interface sessions, using, 115
interfaces, addressing, 115
interfaces, introduction, 111
interrupts, 115
problems, 414
SICL functions, 113, 116
using SICL, 110

H

handling errors, 65

I/O commands, sending, 43
iblockcopy, 209
iblockmovex, 211
icauseerr, 213

iclear, 214

iclose, 215

iderefptr, 216

iflush, 217

ifread, 219

ifwrite, 221

igetaddr, 223
igetdata, 224
igetdevaddr, 225
igeterrno, 226
igeterrstr, 227
igetgatewaytype, 228

| (continued)

igetintfsess, 229
igetintftype, 230
igetlockwait, 231
igetlu, 232
igetluinfo, 233
igetlulist, 235
igetonerror, 236
igetonintr, 237
igetonsrq, 238
igetsesstype, 239
igettermchr, 240
igettimeout, 241
igpibatnctl, 242
igpibbusaddr, 243
igpibbusstatus, 244
igpibgett1delay, 246
igpibllo, 247
igpibpassctl, 248
igpibppoll, 249
igpibppollconfig, 250
igpibppollresp, 251
igpibrenctl, 252
igpibsendcmd, 253
igpibsett1delay, 254
igpioctrl, 255
igpiogetwidth, 259
igpiosetwidth, 260
igpiostat, 262

ihint, 265

iintroff, 267

iintron, 268
ilangettimeout, 269
ilantimeout, 270
ilocal, 273

ilock, 274

imap, 277

imapinfo, 283
imapx, 280
instrument, definition, 138
interface session, 39

428

Index

| (continued)

interface sessions, RS-232, 163, 172
interpreted SCPI (I-SCPI), 130
interrupt driven (INTR), 265

interrupt handlers, 63
interrupts, 62

IO Config, 23, 40, 93, 132, 145, 167, 189

ionerror, 285
ionintr, 288
ionsrqg, 290
iopen, 291

IP address, 188
ipeek, 293
ipeekx16, 294
ipeekx32, 294
ipeekx8, 294
ipoke, 295
ipokex16, 296
ipokex32, 296
ipokex8, 296
ipopfifo, 297
iprintf, 299
ipromptf, 309
ipushfifo, 310
iread, 312
ireadstb, 314
iremote, 315
iscanf, 316
I-SCPI interface, 135
iserialbreak, 326
iserialctrl, 327
iserialmclctrl, 330
iserialmclstat, 331
iserialstat, 332
isetbuf, 336
isetdata, 338
isetintr, 339
isetlockwait, 346
isetstb, 347
isetubuf, 348
iswap, 350

| (continued)

itermchr, 352
itimeout, 353
itrigger, 354
iunlock, 356
iunmap, 357
iunmapx, 359
iversion, 361
ivxibusstatus, 362
ivxigettrigroute, 365
ivxirminfo, 366
ivxiservants, 369
ivxitrigoff, 370
ivxitrigon, 372
ivxitrigroute, 374
ivxiwaitnormop, 376
ivxiws, 377
iwaithdlr, 379
iwrite, 381

ixtrig, 383

L
LAN

application terminations/timeouts, 203

client/server model, 181
clients and threads, 185
default timeout values, 200

gateway, 183

hardware architecture, 182
interface sessions, 197
interfaces, overview, 181

IP address, 188, 190
LAN-gatewayed sessons, 190

locks, 198

networking protocols, 183

servers, 185

SICL configuration, 185
SICL functions, 197
SICL performance, 185

Index

429

L (continued)
LAN (cont'd)
SICL-LAN protocol, 183
software architecture, 183
TCP/IP protocol, 183, 184
threads, 198
timeout functions,
timeouts, 199, 200, 202
using the ping Utility, 416
using the rpcinfo Utility, 417
VXI-11 protocol, 184
libraries, C applications, 35
little-endian byte ordering, 351

locking, multi-user environment, 72

locks
actions, 72
using, 71

Message Viewer, 65, 409
msg-based devices, 129, 131

N

non-formatted /O, 59
notice, 11

(0

opening comm sessions, 39
overview, guide, 15
overview, SICL, 16

P

peeks and pokes, register, 130
polling (POLL), 265

porting to Visual Basic, 397
printing history, 12

progr VXI reg-based devices, 135

R

register peeks and pokes, 130
register-based devices, 129, 135
restricted rights, 11

RS-232

cable information, 398, 399
common problems, 413
communications sessions, 163
devices, addressing, 167
device sessions, 163, 167
interface sessions, 163, 172
interfaces, 161, 162, 172
SICL functions, 164, 168, 173

S

selecting GPIB comm sessions, 91
selecting GPIO comm session, 113
sending I/O commands, 43

SICL

applications, building, 35

core SICL functions, 392
description, 16

device sessions functions, 92
error codes, 65, 409

GPIB interface sessions, 98
GPIB SICL functions, 91, 394
GPIO SICL functions, 113, 395
LAN SICL functions, 395
RS-232 SICL functions, 395
VXI SICL functions, 130, 396
language reference, 207
overview, 16

programs, troubleshooting, 408
SICL declaration file, 35
system information, 389, 390
using with GPIB, 88

using with LAN, 180

using with RS-232, 160

using with VXI, 124

430

Index

S (continued)

SICL-LAN protocol, 183
SRQ handlers, 62
SRQs, 62

status byte, 94, 139, 347

-

Task Manager, 412
TCP/IP protocol, 183, 184
threads, 213, 285
trademark information, 12
troubleshooting
GPIO problems, 414
LAN problems, 416, 418, 419
RS-232 problems, 413
SICL programs, 408
Windows problems, 412

U

using GPIB cmdr sessions, 103
using GPIB interface sessions, 98
using GPIO interface sessions, 115
using RS-232 interface sns, 172
using SICL with GPIO, 110

using SICL with RS-232, 160

using SICL with VXI, 124

using VXI interface sessions, 145

\'

VISA, definition, 16
Visual Basic
applications, 37
porting to, 27, 397
Visual C++ compilers, using, 36

V (continued)

VME devices
communicating with, 148
declaring resources, 148
interrupts, 150
mapping VME memory, 149
read/write to dev registers, 150
unmapping memory space, 150
VXI
backplane mem 1/O perf, 152
block memory access, 153
command module, 135
compiled SCPI, 135
device types, 129
I-SCPI interface, 135
interface sessions, 145
msg-based devices, 129, 132
progr msg-based dev, 131
register programming, 135
reg-based devices, VXI, 129
reg-based instr drivers, 137
SICL functions, 130, 152
single location peek/poke, 152
VXI-11 protocol, 184

w

warranty information, 11
Windows, thread support, 38

X
XON/XOFF, 173

Index

431

	Contents
	Front Matter
	Notice
	Warranty Information
	U.S. Government Restricted Rights
	Trademark Information
	Printing History
	Copyright Information

	Chapter 1 - Introduction
	What’s in This Guide?
	SICL Overview
	Introducing VISA and SICL
	SICL Description

	If You Need Help

	Chapter 2 - Getting Started with SICL
	Getting Started Using C
	C Example Program Code
	C Example Code Description
	Compiling the C Example Program
	Running the C Example Program
	Where to Go Next

	Getting Started Using Visual Basic
	Porting to Visual Basic 6.0
	Visual Basic Program Example Code
	Visual Basic Example Code Description
	Building and Running the VB Example Program
	Where to Go Next

	Chapter 3 - Programming with SICL
	Building a SICL Application
	Including the SICL Declaration File
	Libraries for C Applications and DLLs
	Compiling and Linking C Applications
	Loading and Running Visual Basic Applications
	Thread Support for 32-bit Windows Applications

	Opening a Communications Session
	Steps to Open a Communications Session
	Device Sessions
	Interface Sessions
	Commander Sessions

	Sending I/O Commands
	Formatted I/O in C Applications
	Formatted I/O in Visual Basic Applications
	Non-Formatted I/O

	Handling Asynchronous Events
	SRQ Handlers
	Interrupt Handlers
	Temporarily Disabling/Enabling Asynchronous Events

	Handling Errors
	Logging SICL Error Messages
	Using Error Handlers in C
	Using Error Handlers in Visual Basic

	Using Locks
	What are Locks?
	Lock Actions
	Locking in a Multi-User Environment

	Additional Example Programs
	Example: Oscillosope Program (C)
	Example: Oscillosope Program (Visual Basic)

	Chapter 4 - Using SICL with GPIB
	Introduction to GPIB Interfaces
	GPIB Interfaces Overview
	Selecting a GPIB Communications Session
	SICL GPIB Functions

	Using GPIB Device Sessions
	SICL Functions for GPIB Device Sessions
	Addressing GPIB Devices
	GPIB Device Session Examples

	Using GPIB Interface Sessions
	SICL Functions for GPIB Interface Sessions
	Addressing GPIB Interfaces
	GPIB Interface Session Examples

	Using GPIB Commander Sessions
	SICL Functions for GPIB Commander Sessions
	Addressing GPIB Commanders

	Writing GPIB Interrupt Handlers
	Multiple I_INTR_GPIB_TLAC Interrupts
	Handling SRQs from Multiple GPIB Instruments

	Chapter 5 - Using SICL with GPIO
	Introduction to GPIO Interfaces
	GPIO Interface Overview
	Selecting a GPIO Communications Session
	SICL GPIO Functions

	Using GPIO Interface Sessions
	Addressing GPIO Interfaces
	SICL Functions for GPIO Interface Sessions
	Example GPIO Interface Programs

	Chapter 6 - Using SICL with VXI
	Introduction to VXI Interfaces
	VXI Interfaces Overview
	VXI Communications Sessions
	VXI Device Types
	SICL Functions for VXI Interfaces

	Programming VXI Message-Based Devices
	VXI Message-Based Device Functions
	Addressing VXI Message-Based Devices

	Programming VXI Register-Based Devices
	Addressing VXI Register-Based Devices
	Programming Using the I-SCPI Interface
	Programming Directly to Registers

	Programming VXI Interface Sessions
	VXI Interface Sessions Functions
	Addressing VXI Interface Sessions

	Miscellaneous VXI Interface Programming
	Communicating with VME Devices
	VXI Backplane Memory I/O Performance
	Using VXI-Specific Interrupts

	Chapter 7 - Using SICL with RS-232
	Introduction to RS-232 Interfaces
	ASRL (RS-232) Interface Overview
	RS-232 Communications Sessions
	RS-232 SICL Functions

	Using RS-232 Device Sessions
	Addressing RS-232 Devices
	SICL Functions for RS-232 Device Sessions
	Example Device Session Programs

	Using RS-232 Interface Sessions
	Addressing RS-232 Interfaces
	SICL Functions for RS-232 Interface Sessions
	Example Interface Sessions Programs

	Chapter 8 - Using SICL with LAN
	Introduction to LAN Interfaces
	LAN Interfaces Overview
	Configuring LAN Client Interfaces
	Configuring LAN Server Interfaces

	Using LAN-gatewayed Sessions
	Addressing Guidelines
	SICL Function Support
	Example Programs

	Using LAN Interface Sessions
	Using Locks, Threads, and Timeouts
	Using Locks and Threads Over LAN
	Using Timeouts with LAN

	Chapter 9 - SICL Language Reference
	Introduction
	Function Specifics

	IBLOCKCOPY
	IBLOCKMOVEX
	ICAUSEERR
	ICLEAR
	ICLOSE
	IDEREFPTR
	IFLUSH
	IFREAD
	IFWRITE
	IGETADDR
	IGETDATA
	IGETDEVADDR
	IGETERRNO
	IGETERRSTR
	IGETGATEWAYTYPE
	IGETINTFSESS
	IGETINTFTYPE
	IGETLOCKWAIT
	IGETLU
	IGETLUINFO
	IGETLULIST
	IGETONERROR
	IGETONINTR
	IGETONSRQ
	IGETSESSTYPE
	IGETTERMCHR
	IGETTIMEOUT
	IGPIBATNCTL
	IGPIBBUSADDR
	IGPIBBUSSTATUS
	IGPIBGETT1DELAY
	IGPIBLLO
	IGPIBPASSCTL
	IGPIBPPOLL
	IGPIBPPOLLCONFIG
	IGPIBPPOLLRESP
	IGPIBRENCTL
	IGPIBSENDCMD
	IGPIBSETT1DELAY
	IGPIOCTRL
	IGPIOGETWIDTH
	IGPIOSETWIDTH
	IGPIOSTAT
	IHINT
	IINTROFF
	IINTRON
	ILANGETTIMEOUT
	ILANTIMEOUT
	ILOCAL
	ILOCK
	IMAP
	IMAPX
	IMAPINFO
	IONERROR
	IONINTR
	IONSRQ
	IOPEN
	IPEEK
	IPEEKX8, IPEEKX16, IPEEKX32
	IPOKE
	IPOKEX8, IPOKEX16, IPOKEX32
	IPOPFIFO
	IPRINTF
	IPROMPTF
	IPUSHFIFO
	IREAD
	IREADSTB
	IREMOTE
	ISCANF
	ISERIALBREAK
	ISERIALCTRL
	ISERIALMCLCTRL
	ISERIALMCLSTAT
	ISERIALSTAT
	ISETBUF
	ISETDATA
	ISETINTR
	ISETLOCKWAIT
	ISETSTB
	ISETUBUF
	ISWAP
	ITERMCHR
	ITIMEOUT
	ITRIGGER
	IUNLOCK
	IUNMAP
	IUNMAPX
	IVERSION
	IVXIBUSSTATUS
	IVXIGETTRIGROUTE
	IVXIRMINFO
	IVXISERVANTS
	IVXITRIGOFF
	IVXITRIGON
	IVXITRIGROUTE
	IVXIWAITNORMOP
	IVXIWS
	IWAITHDLR
	IWRITE
	IXTRIG
	_SICLCLEANUP

	Appendix A - SICL Library Information
	File System Information
	Windows 95/Windows 98/Windows Me
	Windows NT/Windows 2000

	SICL Function Summary
	Porting to Visual Basic
	RS-232 Cabling Information
	Cable/Adapter Part Numbers
	Cable/Adapter Pinouts

	Appendix B - Troubleshooting SICL Programs
	SICL Error Codes
	Common Windows Problems
	Common RS-232 Problems
	Common GPIO Problems
	Bad Address (for iopen)
	Operation Not Supported
	No Device
	Bad Parameter

	Common LAN Problems
	General Troubleshooting Techniques
	LAN Client Problems
	LAN Server Problems

	Glossary
	Index

